Меню

Коэффициент свободного падения луны

Ускорение свободного падения на Земле и на Луне

Все тела притягиваются друг к другу — это закон всемирного тяготения. Силы, с которыми тела притягиваются вычисляются по формуле:

Здесь G — это гравитационная постоянная, равная 6,67 × 10 -11 Н · м 2 /кг 2 . Она численно равна силе, с которой одно тело массой 1 кг притягивает другое тело с массой 1 кг, находящееся от него на расстоянии 1 м. Как мы видим, это очень маленькая сила. Поэтому мы замечаем притяжение только к очень массивным телам, космического масштаба.

Если размеры одного тела несоизмеримо меньше размеров другого тела и оно находится на поверхности второго тела или на высоте намного меньше радиуса второго тела, то за расстояние между телами принимается радиус второго тела. (Притяжение всегда идет к центру тела.)

В результате действия закона всемирного тяготения планеты и другие космические тела притягивают к себе другие тела. Эта сила притяжения называется силой тяжести. Под ее действием падающим телам сообщается ускорение свободного падения (g). Сила тяжести вычисляется по формуле:

Подставим вместо F в первую формулу значение F из второй. При этом пусть m1 — это масса падающего на Землю тела. Обозначим ее как m. А m2 — это масса Земли. Обозначим ее как M. Тогда получим:

Разделим обе части формулы на m (массу падающего тела):

Мы видим, что ускорение свободного падения зависит от массы и радиуса планеты. Чем больше ее масса, тем сильнее она притягивает тела и тем больше на ней ускорение свободного падения. Чем больше радиус планеты, тем дальше от ее центра находится притягиваемое тело и тем меньше будет ускорение свободного падения.

Таким образом, чтобы сравнить ускорение свободного падения на Земле и Луне, надо сравнить отношения их масс к квадратам их радиусов. Но чтобы найти само ускорение свободного падения, надо еще умножить на гравитационную постоянную.

Масса Земли приблизительно равна 6 × 10 24 кг, а ее радиус приблизительно равен 6400 км (6,4 × 10 6 м). Поэтому ускорение свободного падения на Земле приблизительно будет равно:

g = 6,67 × 10 -11 Н × м 2 /кг 2 × 6 × 1024 кг ÷ (6,4 × 106 м) 2 ≈ 0,977 × 10 1 ≈ 9,8 Н/кг (м/c 2 )

Масса Луны примерно равна 7,5 × 10 22 кг, а ее радиус примерно равен 1750 км. Поэтому ускорение свободного падения на Луне приблизительно будет равно:

g = 6,67 × 10 -11 Н × м 2 /кг 2 × 7,5 × 10 22 кг ÷ (1,75 × 10 6 м) 2 ≈ 16,335 10 -1 ≈ 1,6 Н/кг (м/с 2 )

Отношение ускорений свободного падения на Земле и Луне равно 9,8 : 1,6 ≈ 6 : 1. Значит, сила притяжения тела с массой m на Луне будет примерно в 6 раз меньше, чем на Земле.

Источник

Ускорение свободного падения

О чем эта статья:

Каникулы со смыслом в Skysmart для детей 4-17 лет

Сила тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.

Читайте также:  Как определять солнце по луне

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей. 🤓

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Формула ускорения свободного падения

g — ускорение свободного падения [м/с 2 ]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Ускорение свободного падения на разных планетах

Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.

Для этого нам понадобятся следующие величины:

  • Гравитационная постоянная
    G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2
  • Масса Земли
    M = 5,97 × 10 24 кг
  • Радиус Земли
    R = 6371 км

Подставим значения в формулу:

Есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значение, что мы указали выше: g = 9,81 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

Читайте также:  Луна отражает солнечные лучи или нет

И кому же верить?

Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 м/с 2 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с 2 .

Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.

Небесное тело

Ускорение свободного падения, м/с 2

Диаметр, км

Расстояние до Солнца, миллионы км

Масса, кг

Соотношение с массой Земли

Источник

Таблица Ускорение свободного падения на планетах солнечной системы

Ускорение свободного падения тел на Луне (естественный и единственный спутник планеты Земля) рассчитывается по формуле:

G — гравитационная постоянная, находится из закона всемирного тяготения и равна 6,67·10 -11 Н м 2 /кг 2
Mл — масса Луны;
Rл — радиус Луны.
Приведённая формула применима для расчёта ускорения свободного падения тела на планетах солнечной системы, в том числе и на планете Земля.

Наименование планеты солнечной системы Значение ускорения свободного падения, м/с 2
Солнце 274
Юпитер 25,8
Нептун 11,6
Сатурн 11,3
Земля 9,8
Уран 9
Венера 8,9
Меркурий 3,7
Марс 3,7
Луна 1,62

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.2 / 5. Количество оценок: 6

Источник

Масса Луны

Масса Луны.

Масса Луны составляет 1,23 % от массы Земли. Иными словами, масса Луны в 81 раз меньше массы Земли. Среди всех спутников планет Солнечной системы Луна стоит на шестом месте по массе.

Масса и плотность Луны:

Масса Луны составляет 7,35 · 10 22 кг или, если быть точнее, 7,3477 · 10 22 кг. Она равна всего лишь 1,23 % от массы Земли. Иными словами, масса Луны в 81 раз меньше массы Земли.

Среди всех спутников планет Солнечной системы Луна стоит на шестом месте по массе (после Титана – спутника Сатурна, Ганимеда – спутника Юпитера, Каллисто – спутника Юпитера, Тритона – спутника Нептуна и Ио – спутника Юпитера).

Масса, как физическая величина, является мерой гравитационных свойств тела (гравитации, притяжения) и мерой его инертности. Соответственно различают гравитационную массу тела и инертную массу тела. В современной физике гравитационная масса и инертная масса считаются равными.

Как следствие проявления гравитационных свойств и действия закона всемирного тяготения два тела притягиваются друг к другу тем сильнее, чем больше их массы. Или чем больше масса тела, тем с большей силой она притягивает другие тела. Гравитационная масса определяет меру такого гравитационного притяжения (силы гравитационного притяжения).

Согласно закону всемирного тяготения сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием r, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния:

где G – гравитационная постоянная, равная примерно 6,67⋅10 −11 м³/(кг·с²).

При этом масса тела не зависит от скорости движения тела и остается неизменным при любых процессах.

Масса измеряется в килограммах и относится к одной из семи основных единиц Международной системы единиц (СИ).

Исходя из массы Луны, как физической величины рассчитываются и другие параметры естественного спутника Земли: плотность, ускорение свободного падения, сила тяжести, первая космическая скорость, вторая космическая скорость и пр.

Средняя плотность Луны (ρ) – 3,3464 г/см³ или 3346,4 кг/м³. Для сравнения: средняя плотность Земли (ρ) – 5,5153 г/см³.

Сила тяжести и ускорение свободного падения на Луне:

Ускорение свободного падения на экваторе Луны (g) равно 1,62 м/с² или 0,165 g Земли. Для сравнения: на Земле ускорение свободного падения составляет 9,81 м/с 2 и меняется от 9,832 м/с² на полюсах до 9,78 м/с² на экваторе.

Читайте также:  Скажи сейчас растущая луна или нет

Сила тяжести на Луне в 6,06 раз меньше, чем на Земле. Это означает, что человек, весящий 72 кг, будет весить на Луне всего 11,952 кг, т.е. около 12 кг. Каждый шаг потребует в 6 раз меньше усилий, чем на Земле. Если быть точнее, то вес человека на Земле равен 72 кг · 9,81 м/с 2 = 706,32 Н, а вес на Луне равен 72 кг · 1,62 м/с 2 = 116,64 Н. В то время масса человека на Луне (72 кг) будет одинаковой, что и на Земле (72 кг).

Вес – это сила, с которой любое тело, находящееся в поле сил тяжести (как правило, создаваемое каким-либо небесным телом, например, Землёй, Солнцем и т. д.), действует на опору или подвес, препятствующие свободному падению тела. Вес тела, покоящегося в инерциальной системе отсчёта, равен силе тяжести, действующей на тело. Сила тяжести – это сила притяжения тела к небесному телу.

Вес (сила тяжести) рассчитывается по формуле F = m·g ,

F – сила тяжести, Н,

m – масса тела, кг,

g – ускорение свободного падения, м/с 2 .

Первая космическая скорость и вторая космическая скорость на Луне:

Первая космическая скорость (v1) на Луне равна 1,68 км/с. Для сравнения: первая космическая скорость на Земле равна 7,91 км/с.

Первая космическая скорость (круговая скорость) – это минимальная (для заданной высоты над поверхностью планеты) горизонтальная скорость, которую необходимо придать объекту, чтобы он совершал движение по круговой орбите вокруг планеты.

Первая космическая скорость определяется массой и радиусом небесного тела, а также высотой над его поверхностью.

Первая космическая скорость вычисляется по формулам:

,

,

М – масса планеты, кг,

R – радиус орбиты, м,

R0 – радиус планеты, м,

h – высота над поверхностью планеты, м.

Вторая космическая скорость (v2) на Луне равна 2,38 км/с. Она в 5 раз меньше (или 0,2 раза больше) второй космической скорости на Земле. Для сравнения: вторая космическая скорость на Земле равна 11,19 км/с.

Вторая космическая скорость (параболическая скорость, скорость освобождения, скорость убегания) – это наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела и покидания замкнутой орбиты вокруг него.

Вторая космическая скорость определяется радиусом и массой небесного тела.

Вторая космическая скорость вычисляется по формулам:

,

.

Влияние Луны на Землю:

Луна является крупным и массивным спутник Земли , а потому она оказывает ощутимое гравитационное воздействие на планету. Основным проявлением такого гравитационного воздействия являются морские приливы и отливы. На противоположных сторонах Земли образуются (в первом приближении) две выпуклости – со стороны, обращённой к Луне, и с противоположной ей. В мировом океане этот эффект выражен намного сильнее, чем в твёрдой коре (выпуклость воды больше). Амплитуда приливов (разность уровней прилива и отлива) на открытых пространствах океана невелика и составляет 30-40 см. Однако вблизи берегов вследствие набега на твёрдое дно приливная волна увеличивает высоту точно так же, как обычные ветровые волны прибоя. Учитывая направление обращения Луны вокруг Земли , можно составить картину следования приливной волны по океану . Сильным приливам больше подвержены восточные побережья материков. Максимальная амплитуда приливной волны на Земле наблюдается в заливе Фанди в Канаде и составляет 18 метров.

Источник

Adblock
detector