Когда было сильная активность солнца
Графики на этой странице отображают динамику активности Солнца в период текущего солнечного цикла. Таблицы обновляются каждый месяц SWPC с последними прогнозами ISES. Наблюдаемые значения представляют собой временные значения, которые заменяются конечными данными, когда они доступны. Все графики на этой странице могут быть экспортированы в виде файлов JPG, PNG, PDF или SVG. Каждый набор данных может быть включен или выключен, щелкнув соответствующее описание под каждым графом.
Количество солнечных вспышек C, M и X-класса в год
На этом графике показано количество солнечных вспышек C, M и X-класса, которые произошли в течение заданного вами года. Это дает представление о количестве солнечных вспышек по отношению к числу солнечных пятен. Таким образом, это еще один способ увидеть как эволюционирует солнечный цикл с течением времени. Эти данные поступают из SWPC NOAA и обновляются ежедневно.
На приведенном ниже графике показано количество солнечных вспышек C, M и X-класса, которые произошли в течение последнего месяца вместе с количеством солнечных пятен каждого дня. Это дает представление о солнечной активности в течение последнего месяца. Эти данные поступают из SWPC NOAA и обновляются ежедневно.
Количество безупречных дней в году
В периоды низкой солнечной активности на поверхности Солнца могут полностью отсутствовать солнечные пятна, такое состояние Солнца считается безупречным. Это часто бывает во время солнечного минимума. На графике показано количество дней в течение определенного года, когда на поверхности Солнца отсутствовали пятна.
Кол-во дней в году когда наблюдались геомагнитные бури
На этом графике показано количество дней в году когда наблюдалась геомагнитные бури и насколько сильными были эти бури. Это дает представление о том, в какие годы было много геомагнитных бурь и динамика их интенсивности.
Источник
Какое было Солнце в момент вашего рождения?
Сейчас ученые уже ясно представляют всю цепочку солнечно-земных связей, приводящих к магнитным бурям, но наука находится в зачаточном состоянии, чтобы проследить связь между Человеком и Солнцем, «рождением Человека и Солнцем». Только сороковые года прошлого века положили началу статистическим данным за вспышками на Солнце в Англии, Германии и России, а 60-70 лет статистики оказался малый срок для такого гиганта, как центр солнечной системы. Ученым и общественности уже известно одиннадцатилетний цикл солнечной активности, но не исключено, что этот цикл – часть макроцикла – 22, 33, некоторые склоняются к 400-летнему циклу.
Киевский ученый Александр Букалов сопоставил даты рождения и смерти множества людей с 11-летним циклом солнечной активности. И вот что выяснилось. Если родился человек на пике солнечных вспышек, то умирает он, когда на звезде затишье, и наоборот! Эта закономерность сработала в 67% случаев. Какая тут может быть связь? Букалов объясняет: зародыш как бы «подстраивается» под те условия, в которых ему довелось развиваться, — в том числе и под состояние магнитного поля. И потом, в жизни ему комфортнее жить в той обстановке, которую он «запомнил» до рождения. А когда «погода» непривычная, организм напрягается. С возрастом это все труднее. Риск заболеть и даже умереть выше в эти периоды. По мнению ученого, для продления жизни каждому было бы полезно знать, как вело себя солнце накануне вашего рождения. Так можно высчитать свои «критические» годы и провести профилактику в нужное время.
Возможно люди, рожденные в разные периоды солнечной активности по-разному переносят магнитные бури, и не только…Но это только гипотеза.
Источник
Солнце переходит в фазу, которая изменит жизнь на Земле
Что принесет всем нам изменение активности небесного светила
В конце последней весенней недели, 29 мая, орбитальная обсерватория SDO зафиксировала мощнейшую за последние три года вспышку на поверхности Солнца.
Представители американского Национального управления по аэронавтике и исследованию космического пространства (НАСА) прокомментировали это событие в апокалиптическом духе, заявив, что с Солнцем происходит что-то не то. Российские ученые отреагировали на это более сдержанно. Как пояснил, в частности, представителям СМИ главный научный сотрудник Лаборатории рентгеновской астрономии Солнца ФИАН Сергей Богачев, случившаяся вспышка указывает на завершение аномально долгого и спокойного периода солнечной «спячки».
Начало нового солнечного цикла, по его словам, полностью определит физику нашей звезды на ближайшие годы.
«Чего же конкретно можно ожидать от нашего небесного светила в последующие несколько лет?», — поинтересовалась «СП» у других отечественных специалистов в области космической погоды.
— Процесс солнечной активности, кроме определенной регулярности и цикличности, к сожалению, еще и довольно стохастичен, то есть случаен, — подчеркнул главный научный сотрудник Института земного магнетизма, ионосферы и распространения радиоволн им. Пушкова РАН, доктор физических наук Борис Филиппов. — Известно, что во время максимума активности на Солнце довольно часто появляются пятна, предваряющие солнечные вспышки. Но уверенно заявлять, что это точно случится, например, уже в следующем месяце, довольно затруднительно, потому что процессы внутри Солнца очень сложно исследовать, и данным по ним собрано пока очень мало.
«СП»: — То есть нельзя исключить, что то, что было интерпретировано как начало очередного цикла, окажется на поверку явлением совсем другого порядка? Насколько реальна вероятность того, что Солнце, действительно, поведет себя как-то не так?
— За всю историю наблюдения за нашей звездой случаев, когда Солнце резко меняло свою циклическую активность, не было зафиксировано. Но, с другой стороны, научному изучению нашего небесного светила не так уж и много лет, всего пара-другая сотен.
«СП»: — Некоторые СМИ, рассказывая о зафиксированной 29 мая вспышке на Солнце, вспоминают о XVII веке, когда, например, в России в июле и августе падали морозы, а в сентябре — снег. Солнечная активность последних дней не сулит нам повторение подобной ситуации?
— Да, тогда, во время так называемого «минимума Маундера», действительно, фактически происходило оледенение. А в XVIII-XIX веках был еще так называемый «минимум Дальтона», — признает заместитель директора Пущинской радиоастрономической обсерватории Физического института им. Лебедева РАН, доктор физико-математических наук Игорь Чашей. — Только вот говорить об этом сейчас с уверенностью — гадать на кофейной гуще, хотя такое, в принципе, вполне возможно. Поживем — увидим.
«СП»: — Здесь нужно учитывать какие-то дополнительные факторы, кроме непосредственно солнечной активности?
— Я лично считаю, что Солнце каким-то образом влияет на климат Земли, хотя есть сторонники теории, которая связывает климат планеты с более удаленными факторами вроде космических лучей от вспышек сверхновых звезд. Сказать абсолютно определенно, так это или нет, пока не представляется возможным, поскольку статистики не хватает — слишком медленно происходят процессы, а интерес к ним возник буквально в последнее время.
«СП»: — Если предположить, что сторонники наступления очередного похолодания из-за минимума солнечной активности правы, когда ему на смену может прийти максимум активности Солнца?
— Сейчас можно говорить о выходе активности Солнца на фазу роста после довольно длительного минимума. Через несколько лет мы выйдем на максимум, после чего опять придем к минимуму. Учитывая, что период между двумя минимумами составляет в среднем 11 лет, можно предположить, что максимум наступит примерно в 2030 году. Хотя это не более чем предположение, потому что границы периодов плавают в диапазоне 8−12 лет.
«СП»: — Мы физически как-то будем ощущать максимум солнечной активности?
— Косвенное влияние вполне возможно. Вспомним, в свое время основоположник гелиобиологии, советский профессор Чижевский заметил, что 11-летний цикл характерен для целого ряда хронических заболеваний, а также социальных явлений вроде революций. Что же касается прямой зависимости, то, полагаю, очень уж сильной взаимосвязи между состоянием человека и изменением уровня солнечной активности, думаю, наблюдаться все же не будет. Хотя магнитные бури будут случаться чаще.
«СП»: — Те магнитные бури, которые, как ожидается, случатся у нас уже 8 и 9 июня и будут довольно сильными, можно уже записывать на счет последней солнечной вспышки и считать проявлением усиления солнечной активности?
— Те магнитные бури, которые ожидаются 8 и 9 июня, совершенно точно не связаны со вспышками на Солнце, зафиксированными на прошлой неделе. Просто потому, что выброс плазмы, который, собственно, и провоцирует магнитные бури, летит до Земли три дня. Так что в данном конкретном случае получается, что в огороде бузина, а в Киеве дядька, — уверяет член-корреспондент РАН, директор Института космических исследований (ИКИ) РАН, доктор физико-математических наук Анатолий Петрукович. — Когда мы говорим о взаимосвязи между вспышками на Солнце и магнитными бурями, надо четко представлять себе детализацию — где конкретно произошла вспышка, был ли при этом зарегистрирован выброс плазмы, полетел ли он по направлению именно к нашей планете или же был направлен в другую сторону, и тому подобные вещи.
«СП»: — И все же, если нынешняя вспышка все же означает переход активности Солнца от минимума к максимуму, как учащение магнитных бурь может отразиться на нашей планете?
— Вообще-то «минимумы» и «максимумы» — это бытовое восприятие солнечной активности. Здесь правильнее говорить об изменении магнитного поля Солнца, которое протекает либо относительно спокойно, либо более возмущенно (при этом моделированные кадры небесного светила приобретают усиленную «волосатость»). Так вот, на «минимуме» магнитное поле более спокойно, а при переходе к «максимуму» оно усложняется. Но это не значит, что у нас сразу начинается апокалипсис, сам по себе рост солнечной активности занимает несколько лет.
Когда мы увидим, что цикл нашего небесного светила перешло на новый цикл, мы скажем — да, теперь вспышек у нас будет больше, соответственно, магнитных бурь тоже будет больше. Но это в своем роде банальность, все равно как говорить о том, что зимой бывает снег. Главный вопрос тут в другом — а насколько очередной солнечный максимум окажется сильнее предыдущего.
Увеличение активности Солнца, конечно, окажет влияние на работу космических спутников, несколько увеличится степень радиоактивной угрозы для них. Возрастут, в частности, радиопомехи. Что же касается воздействия геомагнитных возмущений на здоровье людей, то тема эта в целом, конечно, довольно дискуссионная. Но если говорить о здоровых людях, то этот метеофактор оказывает на них стрессовое влияние.
Организм чувствует, что вокруг складывается нестандартная ситуация, и начнет на нее реагировать, и реакция эта, согласно последним взглядам на данную проблему, оказывается очень индивидуальной. Только стоит принять во внимание, что если человек проживает в городе, то на него параллельно будут воздействовать не только природные, но и другие стрессовые факторы, которых довольно много.
«СП»: — По каким-то признакам в данном случае уже можно предположить, будет ли этот грядущий максимум сильно отличаться от предыдущих?
— Тот солнечный максимум, который пришелся на конец девяностых — начало нулевых, был довольно-таки сильным. Он, конечно, рекордов все же никаких не побил, но магнитных бурь хватило всем, как говорится, за глаза. А вот следующий солнечный максимум, который был зафиксирован в десятых годах нынешнего века, честно говоря, оказался куда слабее. И основные прогнозы на грядущий солнечный максимум позволяют предположить, что он также окажется слабым. Но ведь прогнозы штука такая, что могут и не сбыться. Так что поживем — увидим.
Источник
Солнечная активность и её ритмичность
Имена космических объектов — Астронимы: | А | Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Э | Ю | Я | |
A | B | C | D | E | F | G | H | I | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Α-Ω | 0-9 |
Солнечная активность (СА) – это целый класс процессов, связанных с переменностью многих параметров нашей звезды, таких как количество солнечных пятен, излучение на разных частотах, поток заряженных частиц, выбрасываемых в космическое пространство и др. [Изучение активности Солнца ведется в рамках гелиофизики, а влиянием СА на Землю — гелиогеофизика и гелиоклиматология.] Солнечная активность характеризуется многоритмичностью и многоплановым воздействием на биосферу, магнитосферу, и климат Земного шара. Сами циклы гелиоактивности влияютскорее всего также на динамику общества, ргулярные взрывы этногенеза, теоретически обоснованную Львом Николаевичем Гумилёвым. Однако, не только Солнце воздействует на свои планеты, но и, по всей видимости, само взаимное расположение планет приводит к определенной ритмичности в активности нашего светила. Эта планетарно-солнечная взаимосвязь и исследуется на этой странице. Разделы страницы о ритмах появления солнечных пятен, их зависимости от расположения планет и влияние на планеты, циклическом воздействии Солнца на климатические и исторические процессы на Земле и о причинах этой ритмичности: Влиянию планет на Солнце посвящен специальный раздел в статье о резонансах в Солнечной системе и их следствию — Правилу Тициуса-Боде (правда, статья еще не завершена). Поиском вероятного влияния солнечных и космических факторов не только на погоду, но и на историю общества посвящена другая статья (тоже пока черновик, в начале написания), где выявляется посредник-проводник этого воздействия — система линейных геологических структур. Также читайте литературу и смотрите веб-ресурсы о солнечно-земных связях и взаимном влиянии Солнца и планет. Солнечная активностьИстория открытия солнечной активностиНаиболее известное проявление солнечной активности – это изменение числа солнечных пятен. Первые письменные свидетельства пятен на Солнце относятся к 800 году до н.э. [в Китае?], а с изобретением в XVII веке телескопа наблюдения за ними начинают проводиться и в Европе. В первой половине XIX века астроном-любитель Генрих Швабе обнаружил периодичность в количестве видимых пятен на диске Солнца. Так был открыт 11-летний цикл солнечной активности [он варьирует от 9 до примерно 14 лет — в среднем, около 11,2 года]. Это открытие вызвало большой интерес в научном мире, и швейцарский астроном Рудольф Вольф организовал первую службу Солнца в Цюрихе. С тех пор наблюдения за Солнцем проводятся регулярно. Позже были обнаружены и другие циклы активности Солнца: 22-летний, вековой и т.д. Проявление солнечной активностиКомплекс явлений, вызванных генерацией сильных магнитных полей на Солнце, называют солнечной активностью. Эти поля проявляются в фотосфере как солнечные пятна и вызывают такие явления, как
Солнечные пятна на фотосфереВ периоды минимума активности пятна могут вообще не наблюдаться на поверхности Солнца, в то время как в годы максимума их число достигает десятков сотен. Температура солнечного пятна примерно 4000К, что на 2000К меньше температуры других областей фотосферы. Поэтому при наблюдениях в телескоп со светофильтром пятна кажутся более темными областями, по сравнению с окружающей поверхностью. Исследования Солнца в XX веке показали, что пятна – это области выхода в фотосферу мощных магнитных полей. Потемнение фотосферы в этих областях объясняется тем, что мощные сгустки магнитных силовых линий препятствуют конвективным движениям [стабилизируют?] вещества из более глубоких слоев. Это и приводит к снижению потока тепловой энергии. Конфигурация магнитных полей солнечного динамоУченые уже давно пытаются разобраться в причинах цикличного поведения Солнца. Известно, что в начале 11-летнего цикла солнечное магнитное поле имеет дипольную конфигурацию и направлено преимущественно вдоль меридианов (такое поле называют «полоидальным»). В максимуме цикла оно сменяется полем, направленным вдоль параллелей («тороидальное»). В конце цикла поле вновь сменяется на полоидальное, но теперь оно направлено в сторону, противоположную направлению начала цикла. За генерацию магнитных полей, а также за образование солнечных пятен отвечает процесс, называемый «солнечное динамо». Эта модель как раз объясняет наблюдательные особенности. Из-за того, что экваториальные области Солнца вращаются быстрее, чем полярные («дифференциальное вращение»), изначально полоидальное поле, увлекаясь вращающейся плазмой, должно растягиваться вдоль параллелей, приобретая тем самым тороидальную компоненту. Этот процесс получил название «омега-эффект». Чтобы цикл мог продолжаться снова и снова, тороидальное поле должно каким-то образом снова преобразовываться в полоидальное. В 1955 году американский астрофизик Юджин Паркер показал, что объемы солнечной плазмы должны вращаться за счет сил Кориолиса. Эта сила и растягивает компоненты магнитного поля, превращая тороидальные магнитные поля в полоидальные (т.н. «альфа-эффект»). Считается, что этот эффект возникает в непосредственной близости от поверхности Солнца в районе пятен. Но эта теория не может объяснить наблюдаемую продолжительность солнечного цикла. Число Вольфа и 11-летний цикл активности СолнцаОдним из наиболее распространённых показателей уровня солнечной активности является число Вльфа, связанное с количеством солнечных пятен на видимой полусфере Солнца [интересно, а как в это время на другой стороне?] Солнечная активность в числах Вольфа имеет циклический характер со средней продолжительностью цикла в 11.2 года. Эпоха, когда количество активных областей бывает наибольшим, называется максимумом солнечного цикла, а когда их почти нет — минимумом. Нумерация солнечных циклов начинается с того момента, когда начались регулярные ежедневные наблюдения числа пятен [какой год?]. За последние 80 лет течение цикла несколько ускорилось и средняя продолжительность циклов уменьшилась примерно до 10.5 лет. За последние 250 лет самый короткий период был равен 9 годам, а самый длинный 13.5 лет [в среднем, 11,25 лет]. Таким образом, поведение солнечного цикла регулярно только в среднем. Полный 22-летний магнитный цикл СолнцаВ 1908 г. Д. Хейл открыл, что солнечные пятна обладают сильным магнитным полем. Более поздние измерения магнитного поля в группах, состоящих из двух солнечных пятен, показали, что эти два пятна имеют противоположные магнитные полярности, указывая, что силовые линии магнитного поля выходят из одного пятна и входят в другое. В течение одного солнечного цикла в одной полусфере (северной или южной) ведущее пятно (по направлению вращения Солнца) всегда одной и той же полярности. По другую сторону экватора полярность ведущего пятна противоположная. Такая ситуация сохраняется в течение всего текущего цикла, а затем, когда начинается новый цикл, полярности ведущих пятен меняются. Первоначальная картина магнитных полярностей т.о. восстанавливается через 22 года, определяя магнитный цикл Солнца. Это означает, что полный магнитный цикл Солнца состоит из двух одиннадцатилетних — четного и нечетного, причем четный цикл обычно меньше нечетного [т.е., первая фаза больше 11,2 года, вторая — меньше?]. 22-летний цикл («цикл Хейла») является, в сущности, удвоенным циклом Швабе. Он был открыт после того, как в начале XX века была понята связь между солнечными пятнами и магнитными полями Солнца. Оказалось, что за один цикл пятенной активности общее магнитное поле Солнца меняет знак: если в минимуме одного цикла Швабе фоновые магнитные поля преимущественно положительны вблизи одного из полюсов Солнца и отрицательны — вблизи другого, то примерно через 11 лет картина меняется на противоположную. Каждые 11 лет меняется и характерное расположение магнитных полярностей в группах солнечных пятен. Таким образом, для того, чтобы общее магнитное поле Солнца вернулось к своему исходному состоянию, должно пройти два цикла Швабе, то есть около 22 лет. Закономерности формы различных циклов САНесмотря на различную длительность отдельных циклов, каждому из них свойственны общие закономерности. Так, чем интенсивнее цикл, тем короче ветвь роста и тем длиннее ветвь спада, но для циклов малой интенсивности как раз наоборот — длина ветви роста превышает длину ветви спада. В эпоху минимума в течение некоторого времени пятен на Солнце, как правило, нет. Затем они начинают появляться далеко от экватора на широтах ±40°. Одновременно с возрастанием числа солнечных пятен сами пятна мигрируют в направлении солнечного экватора, который наклонен к плоскости орбиты Земли (к эклиптике) под углом в 7°. К концу цикла пятна в основном появляются вблизи широты ±5°. В это время на высоких широтах уже могут появляться пятна нового цикла. Г. Шперер был первым, кто исследовал эти широтные изменения. Он и английский астроном-любитель Р. Кэррингтон провели большие серии наблюдений периодов обращения пятен и установили тот факт, что Солнце не вращается как твердое тело — на широте 30°, например, период обращения пятен вокруг Солнца на 7% больше, чем на экваторе. В подъеме и спаде солнечных циклов существует некоторая закономерность. Возможно, это указывает на существование более длительного цикла, равного примерно 80-90 годам. Спектр солнечного ритмаПоскольку основной квазицикл лежит в диапазоне 9-14 земных лет, его кратные значения тоже будут размыты и иногда перекрываться, что затруднит верное вычисление множителя: 40-60 (уже слегка перекрывается с предыдущим) 50-70 (тоже частичное перекрытие с предыдущим) 50-70 (также, как предыдущий диапазон) 60-100 (перекрытие с 2-мя предыдущими) 70-110 (перекрытие с предыдущим) 80-130 (т.н., «околовековой цикл», перекрывающийся с 2-мя предыдущими) 100-150 (перекрытие с 3-мя предыдущими) Прошлое и будущее солнечной активностиСвидетельства солнечных всплесков и прогнозирование динамики гелиоактивности. Хроника всплесков на нашем светилеСобытия МиякеМощные вспышки на Солнце, оставляющие следы в годичных кольцах деревьев и называемые «события Мияке», позволяют с точностью до года определить возраст археологической находки или проверить историческую гипотезу. Науке известны следующие события Мияке:
Современное состояние солнечной активностиПо данным ученых, в марте 2020 года Солнце достигло наименьшей активности, и новый «цикл Хейла» может начаться уже в апреле. При этом пик солнечной активности придется на лето 2025 года. В это время на Солнце появится примерно 115 или немного больше солнечных пятен. И вот, 29 мая орбитальная обсерватория SDO зафиксировала мощнейшую за последние 3 года вспышку на поверхности Солнца, которая указывает на завершение аномально долгого и спокойного периода солнечной «спячки». Это вспышка относится к классу M, которая лишь на одну ступень слабее событий класса X. Это стало неожиданностью, так как подобные вспышки обычно предваряют более слабые проявления солнечной активности, вспышки класса C. По этому поводу у ученых есть две теории. С одной стороны, опыт наблюдений за прошлыми циклами активности Солнца говорит о том, что из-за подобного резкого пробуждения светила следующие вспышки будут мощнее и происходить станут чаще. С другой стороны, долгий «штиль» на Солнце и небольшое число слабых вспышек во время этого периода может действительно указывать на то, что светило движется к столетнему или даже тысячелетнему минимуму активности. В таком случае начало цикла с мощной вспышки будет простой случайностью. Последующие наблюдения за Солнцем дадут ответ на этот вопрос. По расчетам астрономов, к 2050 году температура Солнца может опуститься до маундеровского минимума, зафиксированного в период примерно с 1645 по 1715 годы. Циклы солнечной активностиВесь спектр солнечного ритма (список циклов)Основные циклы главнейших явлений атмосферы, гидросферы и литосферы, в связи с солнечной активностью и инсоляцией (в основном — по А. В. Шнитникову 1963 [но здесь не объяснена эта связь, кроме пометок у некоторых из этих циклов?] и Б. М. Владимирскому 2003 [в основном, социальные циклы]):
Видим, что наибольший вклад (по количеству открытых циклов СА) внесли Ангенгейстер (2), Брикнер (2), Джиллет (2), Дуглас (3), Лунгерсгаузен (2), Перфильев (2), Петтерссон (2), Шостакович (7).
Внутривековые ритмы САГлобальный магнитный цикл Солнца проявляется в виде следующих особенностей:
11-летний цикл солнечной активностиНаиболее известным и изученным является 11-летний цикл, открытый Генрихом Швабе и подтвержденным Робертом Вольфом, который исследовал изменение активности солнца за два с половиной столетия при помощи предложенного им индекса Вольфа: Одиннадцатилетний цикл («цикл Швабе» или «цикл Швабе-Вольфа») является наиболее заметно выраженным циклом солнечной активности. Этот период активности Солнца самый известный и более изученный. Также его называют законом Швабе-Вольфа, отдавая дань первооткрывателю этой периодичности светила. Название «одиннадцатилетний» несколько условно для данного цикла. Продолжительность его, например, в XVIII – XX веках колебалась от 7 до 17 лет, а в веке ХХ среднее значение составило 10,5 лет. В первые четыре года цикла происходит активное увеличение количества солнечных пятен. Также учащаются вспышки, число волокон и протуберанцев. В следующий период (около семи лет) количество пятен и активность уменьшаются. 11-летние циклы имеют различные высоты в максимумах. Их принято измерять в относительных числах Вольфа. Самым высоким индексом за всё время наблюдений отметился 19-й цикл. Его значение составило 201 единица, при минимуме около 40. 22-летний цикл ХейлаБыл также открыт 22-летний цикл солнечной активности, который определяет эволюцию магнитных полей на Солнце, однако, во многих глобальных индексах СА он прослеживается весьма слабо. Это говорит о том, что данный цикл является циклом качественных, а не количественных характеристик. Двадцатидвухлетний цикл («цикл Хейла») является, в сущности, удвоенным циклом Швабе. Он был открыт после того, как в начале XX века была понята связь между солнечными пятнами и магнитными полями Солнца. При этом оказалось, что за один цикл пятенной активности общее магнитное поле Солнца меняет знак: если в минимуме одного цикла Швабе фоновые магнитные поля преимущественно положительны вблизи одного из полюсов Солнца и отрицательны — вблизи другого, то примерно через 11 лет картина меняется на противоположную. Каждые 11 лет меняется и характерное расположение магнитных полярностей в группах солнечных пятен. Таким образом, для того, чтобы общее магнитное поле Солнца вернулось к своему исходному состоянию, должно пройти два цикла Швабе, то есть около 22 лет. Другие циклы СА, кратные одиннадцатилетнемуПредполагается существование 33, 44 и 55 летних циклов изменения активности Солнца. Также установлено что величина максимума циклов меняется с периодом около 80 лет. [Таким образом появляется вековой цикл солнечной активности] Околовековые ритмы САВ настоящее время прямые наблюдения Солнца насчитывают чуть больше 400 лет. Это позволило достаточно хорошо изучить характеристики 11-летних циклов и установить, что в изменениях высоты 11-летних циклов присутствуют долговременные циклы, получившие название вековых. Впервые на наличие много[десяти]летнего цикла продолжительностью 66–83 года обратил внимание Вольф, располагавший данными о солнечной активности примерно за два вековых цикла, поэтому он и считается его первооткрывателем. Результаты ранних исследований вековых циклов изложены в монографии Б.М. Рубашева (1964). [Отметим также, что фиксируются необъяснимые сбои циклов] Используя данные о солнечно обусловленных явлениях (полярные сияния), Глейсберг получил данные о продолжительности 17 вековых циклов СА, которая изменялась в пределах от 7 до 11 одиннадцатилетних циклов. Этот цикл («цикл Гляйсберга») продолжается от 70 до 100 лет. Это модуляция одиннадцатилетних циклов. В середине прошлого века был максимум такого цикла, и следующий придётся на середину века нынешнего. С использованием более информативного индекса Шове (сконструирован также по полярным сияниям) было установлено, что продолжительность слабовыраженных вековых циклов доходит до 70 лет, а хорошо выраженных – составляет более 100 лет, то есть наблюдается зависимость продолжительности от мощности векового цикла. Средняя продолжительность вековых циклов по оценкам разных авторов колеблется от 79 до 93 лет (Клаф приводит графический пример с совмещением брикнеровского 37-летнего и векового 83-летнего циклов). Более поздние исследования, посвященные этому вопросу, приведены в работах Ю.А. Наговицина, где представлены данные об изменениях продолжительности долговременных циклов солнечной активности, выявленных по различным солнечно обусловленным явлениям, которые показывают, что интересующие нас долговременные циклы по продолжительности концентрируются в районах 60, 90, 130, а, возможно, и более лет. На графике слева показаны наблюдения цикличности солнечной активности за 400 последних лет. Всего видим 27 пиков за период 1700-2000 года, т.е. периодом 300 / 27 = 11,1 лет (классический цикл СА). За этот же период наблюдается и 3 околовековых ритма периодом 300/3 = 100 лет. В монографии В.Ф. Чистякова утверждается, что наблюдается цепочка двух видов вековых циклов типа 95–115–95–115 лет и так далее (т.е., в среднем, 105 лет), которая была прослежена автором на протяжении последних 1600 лет. Причем 95-летние циклы имеют крутую ветвь подъема и отлогую ветвь спада, а 115-летние наоборот. Из анализа этих результатов следует, что текущий вековой цикл имеет продолжительность 115 лет и его минимум наступит в 2020 г. Текущий 115-летний и последующий за ним 95-летний циклы сомкнутся крутыми ветвями, поэтому в минимуме этих вековых циклов будет наблюдаться два относительно слабых 11-летних цикла. Первый из которых мы сейчас, по-видимому, и наблюдаем. Многовековые ритмы САУченые, изучив кольца на спилах деревьев, ленточную глины, сталактитам, залежам ископаемых, раковинам моллюсков и другие признаки, предположили существование и более продолжительных циклов, длительностью около 110, 210, 420 лет (вековые). А так же и так называемые сверхвековые циклы 2400, 35000, 100000 [колебания Каспия] и, даже, 200 — 300 миллионов лет [порядка Галактического года]. На рисунке слева Эдди даёт совмещение многовековых циклов солнечной активности с различными климатическими кривыми за последние 5000 лет, откуда мы видим следующие максимумы СА (9): -2700, -2250, -1800, -1100, -500, 0, 1200, 1600, 2000? г. и минимумы СА (9): -3000?, -2500, -2000, -1300, -700, -400, 700, 1500, 1700. Периодичность между ними, начиная от 3000 года, составляет для максимумов: 450, 450, 700, 600, 500, 1200, 400, 400, для минимумов: 500, 500, 700, 900, 1100, 800, 200, т.е., в среднем, 5000 / 9 = 556 лет — это около 49 солнечных циклов, почти 50. В таблице выше он фигурирует как 500-600-летний ( 570 цикл III-A.10-II-A.12. Двухвековая цикличность САОтмечена и двухвековая цикличность. В её минимумы (периоды около 200 лет) наблюдаются устойчивые ослабления солнечной активности. Они длятся десятки лет и носят название глобальных минимумов — минимум Маундера (1645-1715), минимум Шпёрера (1450-1540), минимум Вольфа (1280-1340) и другие. Период Маундера (400-500 лет)Маундеровский минимум (Минимум Маундера) — период долговременного уменьшения количества солнечных пятен в 1645—1715 годы (60 лет). По подсчётам английского астронома Эдварда Уолтера Маундера (1851—1928), за этот период наблюдалось всего около 50 солнечных пятен вместо обычных 40-50 тысяч. Изотопный анализ позволил выявить 18 минимумов активности Солнца за последние 8000 лет, включая минимум Шпёрера (1450—1540 или 1400-1510 — 110 лет) и минимум Дальтона (1790—1820). Следовательно периодичность этих минимумов составляет 8000/18 = 444,4 450 лет [40 11-летних циклов], а длительность — несколько десятков лет [причем, видимо, в промежутках — через 150—200 лет — могут быть промежуточные минимумы типа последних двук названных]. Если так, то в XXI веке может наступить новый минимум. Кроме того, во время Маундеровского минимума наблюдалось падение интенсивности полярных сияний и скорости вращения Солнца [!]. Согласно Л. В. Константиновской (Солнечная активность, 2000?), с 1660 по 1680 год (в минимум Маундера) кроме минимума СА наблюдались следующие события:
Согласно Т. В. Гайворонской (2011), солнечная активность и земная сейсмичность — противоположные явления. Следовательно, в минимумы СА, повторяющихся с этим периодом, должно наблюдаться и повышение количества землетрясений. Сверхтысячелетние циклы САТакже существуют циклы в 1000 и 2300 лет. Цикл Холлстатта (халльштаттские колебания)Цикл примерно в 2300 (2100-2500) лет, называемый «циклом Холлстатта», установлен по данным радиоуглеродного анализа. Это колебания изотопов Be10 и C12. В последний десяток тысяч лет наша планета испытывает систематические изменения в климате и количестве радиоактивных изотопов углерода и бериллия (углерод-14 и бериллий-10). Данные изменения называют халльштаттскими колебаниями, с периодом около 2100 — 2500 лет. С некоторым запозданием относительно циклического изменения уровня изотопов слегка изменяется и земной климат. Последние 2500 лет мы находимся в так называемом субатлантическом периоде – довольно прохладным по климату сравнительно с предшествующими временами. До самого последнего времени причины колебаний изотопов и климата оставались неясными. Астрономы из Италии проанализировали колебания климата за последние 12 000 лет (конец верхнего палеолита) и пришли к выводу, что его периодические изменения связаны с влиянием нескольких крупнейших планет Солнечной системы. Их гравитация раз в 2318 лет слегка изменяет орбиту Земли, то увеличивая, то уменьшая количество получаемой ею от Солнца энергии. Статья опубликована в Earth Science Reviews, а с её препринтом можно ознакомиться на сайте Корнелльского университета. Исследователи показали, что самым вероятным претендентом на роль виновника халльштаттских циклов являются 4 планеты-гиганта Солнечной системы: Юпитер, Сатурн, Уран и Нептун. Дело в том, что все эти планеты имеют периоды вращения, позволяющие им примерно раз в 2318 лет «выстраиваться» на одной оси относительно Солнца (орбитальный резонанс). По расчётам авторов, это изменяет взаимное расположение общего центра масс [барицентра] всех крупных [всех планет, а не только крупных] планет и Солнца. На первый взгляд ничтожное изменение имеет серьезные последствия: каждые 2318 лет вытянутость эллиптических орбит всех планет в целом несколько сокращается, и они становятся ближе к ровной окружности. «Выравнивание» орбит слегка меняет как гравитационное, так и электромагнитное поле Солнечной системы в целом, а также воздействует на циклы солнечной активности. Все эти три фактора вместе влияют на размеры гелиосферы – «пузыря», образуемого солнечным ветром. За счёт того, что орбиты планет становятся ближе к кругу, весь этот «пузырь» уменьшается в размерах. Космическим лучам извне становится легче проникать внутрь гелиосферы. Когда резонанс, случающийся каждые 2318 лет, проходит, усреднённые орбиты планет системы снова «вытягиваются». За счет этого «пузырь» гелиосферы опять расширяется, а количество галактических лучей внутри него снова падает до нормы. Такие колебания гелиосферы с периодичностью в 2318 лет имеют глубокие последствия для всех планет в целом и для Земли в частности. Частицы солнечного ветра гелиосферы образуют барьер на пути космических лучей — заряженных частиц, летящих от далёких космических объектов. Эти лучи имеют значительную энергию. Если они достигают атмосферы нашей планеты, то часто выбивают протон из встреченных там атомов азота. После этого бывший атом азота становится атомом углерода-14, который окисляется кислородом. Образуется молекула углекислого газа, опускающегося из-за тяжести вниз. У поверхности он связывается растительностью (тогда углерод-14 обнаруживают в древесных кольцах), либо во льду (тогда углерод-14 находят в ледяных кернах). Сходным путём идёт и образование бериллия. Поскольку оба изотопа не очень стабильны, по изменению их концентрации можно датировать всплески и провалы в интенсивности бомбардировки планет космическими лучами. Именно ориентируясь на эти всплески, учёные и предположили существование 2318-летнего цикла, описанного выше. Однако роль космических лучей не сводится к наработке нестабильных изотопов в стратосфере. Как показал ряд опытов последних лет, подобные лучи провоцируют образование в воздухе центров конденсации облаков. Облака изменяют отражательную способность планеты, влияя на долю солнечных лучей, отражаемых Землёй в космос. Это ведёт к колебаниям средней планетарной температуры — изменениям климата. Именно этим авторы новой работы объясняют странные сдвиги температуры в последние 12 тысяч лет, после окончания ледникового периода. Они полагают, что колебания такого рода были и раньше, но отследить их для более древних периодов сложнее, потому что весь углерод-14 из тех эпох уже распался. Авторы показывают, что орбитальные резонансы, влияющие на поток падающих на нас космических лучей, существуют и на отрезках короче 2318 лет. В частности речь идет о периодах в 20, 45, 60, 85, 159-171-185 лет. Все они гораздо слабее 2318-летнего, но также могут оказывать влияние на интенсивность образования облаков и, таким образом, климат планеты. Исследователи предполагают, что это может объяснить множество более быстрых скачков температур в древности и средневековье. Например, малый ледниковый период, он же маундеровский минимум, когда температуры упали настолько резко, что климат Западной Европы соответствовал современной средней полосе России. Последний тезис может вызвать серьёзное противодействие ряда климатологов. Большинство из них полагает, что лишь антропогенные выбросы углекислого газа сильно влияют на климат планеты после окончания ледникового периода. Отсюда и категорические призывы научного сообщества принять меры по борьбе с выбросами парниковых газов и остановить потепление. Если окажется, что климат испытывает серьёзные колебания вне всякого человеческого вмешательства, политику корректировки глобального климата планеты, возможно, придётся пересмотреть.
Многотысячелетние циклы САТакже существуют циклы в 35 и 100 тысяч лет. Влияние планет на гелиоактивность
Логично предположить, что на солнечную активность влияет обращение и расположение планет. Их обращение вокруг нашего светила вызывает:
Периодические же сближения планет между собой усиливают это действие. Важно: ученые из центра имени Гельмгольца Дрезден-Россендорф (HZDR) предлагают новую теорию циклов солнечной активности. В работе, опубликованной в журнале Solar Physics, они показали, что 11-летний цикл может быть вызван приливным влиянием некоторых планет Солнечной системы, а именно Венеры, Земли и Юпитера. Исследователи обратили внимание, что эти три планеты выстраиваются в одном направлении примерно раз в 11 лет. Вероятно, конфигурацией планет нужно объяснять все «разношёрстные» циклы СА, а не только кратные 11-12 годам. К слову, взгляните на следующие астрономические сопоставления с основным 11-летним циклом СА [точнее, 11,1-летним]:
11,3; 11,1; 11,1; 11,1; 11 сидерических периодов обращения Земли = 11,000 земных лет. Также посмотрите, как, например, 180-летний ритм СА проявляется в обращениях и соединениях планет:
Вероятно, эти противостояния и парады вызывают на Солнце приливы. Рассмотрим подробнее их силу и периодичность. Влияние обращения планет на активность СолнцаПрежде всего взглянем на периоды орбит планет Солнечной системы:
6 оборотов Марса) — раньше был основным кандидатом на «главный», 11-летний цикл СА (I-B.10 — I-B.17) 5/2 оборота Юпитера) — может быть фактором 30-летнего цикла СА I-C.26 — I-C.28 Можно сюда добавить также мифические планеты закойперовской зоны и из кометного облака Оорта: Тихе, Прозерпина, причём, некоторые из них могут быть суперземлями, планетами-гигантами или даже достаточно массивными коричневыми карликами — двойниками Солнца. Также интересно сравнить ритмы СА с целочисленными рядами планетарных лет:
Планеты-гиганты (ПГ) слабо [?] участвуют в W-активности Солнца, доминирующее влияние оказывают планеты земной группы (ПЗГ). ПГ определяют В-активность Солнца. W-активность, обусловленная ПГ, определяется различными комбинациями сидерических периодов ПГ. За W-активность Солнца ответственны ПЗГ с периодами: Т = 11,083 лет; Т = 8 лет; Т = 6,778 лет [3/5 11-летнего цикла СА], Т = 1,611 лет, которые можно считать универсальными гелиофизическими константами. Силы, действующие на Солнце, со стороны различных космических объектов (в порядке приливного воздействия):
В последних строках таблицы аббревиатурами обозначены: МП — наша галактика Млечный Путь, МО — соседние Магеллановы Облака, ТА — ближайшая галактика Туманность Андромеды. [Что здесь интересно — ядро Галактики ощутимо влияет на наше светило — всего в 3-4 раза меньше Марса.] Ситуация, в которой планеты выстраиваются приблизительно в одну линию, называется парад планет. Пользуясь результатами расчетов из таблицы, оценим суммарное воздействие планет внутри орбиты Сатурна. Находясь на одной линии, эти планеты создают на Солнце гравитационное поле с напряженностью g = gС + gЮ + gМарс + gЗ + gВ + gМ = (1,9 + 21 + 0,08 + 1,8 + 2,8 + 0,65) ∗ 10 −8 м/с 2 = 28,2 ∗ 10 −8 (м/с 2 ). Таким образом, напряженность гравитационного поля в момент выстраивания шести планет в одну линию увеличивает воздействие Юпитера более, чем на треть. [Впрочем, для упрощения дальнейших расчетов соединений планет влиянием Марса можно пренебречь, как и влиянием центра Галактики.] Вычисление приливного воздействия гравитационно значимых планет на СолнцеПарады планет вычислять сложно, а вот противостояния — легко. Для определения формулы расчёта проделаем сначала мысленный эксперимент из обычной жизненной ситуации (эта замечательная логическая задача подсмотрена в сети — http://nebotan.com/matematika/zid327442.html ).
0,7 года 63 года Видим, что эти соединения почти не наши своё отражение в ритмах Солнца — возможно, потому, что эти периоды близки к периодам обращения планет. Теперь проверим периоды сближений для этих 4 планет (создающие напряженность поля 2,5-4,7) между собой (без Юпитера):
0,4 г. Следующий этап — для этих сближений вычислим периоды сближений с третьей планетой:
На самом деле, таких гравитационных воздействий на Солнце происходит больше ввиду того, что необязательно трём планетам выстраиваться строго по прямой, т.е., нужно учитывать влияние и «парадов планет». Поскольку они происходят не на одной прямой, а близко к ней, общее их приливное воздействие будет несколько меньше показанной суммы в формулк выше. Для вычислений таких «средних парадов» (поскольку учитываться булдут не 4 или 6, а 5 гравитационно значимых планет) нужно задавать наложения синусоид, что несколько сложнее применяемой выше формулы. Влияние парадов планет на активность СолнцаКак было сказаны, бывают так же гравитационно значимые планетарные конфигурации, называемые [в астрологии?] «парадами» планет:
Исторически засвидетельствованные парады планет и их вероятные геосоциальные последствия:
Источник ➤ Adblockdetector |