Меню

Когда во вселенной появилась вода

Когда во Вселенной зародилась вода?

Изучая древние молекулярные облака в нашей галактике, астрономы заметили, что вода во Вселенной появилась гораздо раньше – спустя один миллиард лет после Большого Взрыва.

Загвоздка состояла в том, что молекула воды, состоящая из двух атомов водорода и одного атома кислорода, как и любой элемент тяжелее гелия, была сформирована в ядрах звезд, а не самим Большим Взрывом.

Первым звездам требовалось некоторое количество времени, чтобы сформироваться, состариться и погибнуть, благодаря чему, такие тяжелые элементы как кислород, смогли вырваться через звездные ветра и сверхновые. Принимая во внимание такую временную задержку, астрономы довольно долгое время считали, что вода во Вселенной появилась гораздо позже.

Но согласно новому исследованию, опубликованному в журнале Astrophysical Journal Letters, это могло произойти гораздо быстрее. В самом деле, существует вероятность, что вода могла зародиться спустя один миллиард лет после того, как зародилась Вселенная.

«Мы изучали химию молодых молекулярных облаков, содержащих в тысячу раз меньше кислорода, чем наше Солнце. И к нашему удивлению мы обнаружили, что там может находиться гораздо больше водяного пара, чем предполагалась ранее», — сказал Ави Лоеб, астрофизик из Гарвард-Смитсоновского центра астрофизики.

Первые звезды, зародившиеся спустя 100 миллионов лет после Большого Взрыва, были массивными и нестабильными. Они быстро сжигали свое водородное топливо, взрываясь как сверхновые. Эти звездные взрывы наполнили Вселенную тяжелыми элементами. Результатом этих событий стали газовые карманы богатые тяжелыми элементами («богатыми» — вопрос спорный, так как по сравнению с содержанием кислорода нашей современной галактики, эти ранние газовые облака были очень бедны кислородом).
Но, несмотря на низкий уровень кислорода, среда в то время была идеальной для «приготовления» молекулы воды. Температура около 80 градусов по Фаренгейту(300 по Кельвину) была оптимальной для того, чтобы совместить кислород с атомами водорода, который был в изобилии.

«Такая температура была доступна, потому что Вселенная в прошлом была теплее, чем сегодня, и газ был не в состоянии эффективно охлаждаться», — говорит соавтор исследователь Шмуэль Бялы из Тель-Авивского университета.

«Свечение космического микроволнового фона было жарче, и плотность газа была выше», — добавил Амиэль Штернберг, также соавтор из Тель-Авивского университета.

Тем не менее, в течение этого бурного времени нашей Вселенной, обилие молодых звезд порождало мощное ультрафиолетовое излучение, которое разрывало вновь сформированные молекулы. Но спустя миллионы лет, разрушительное воздействие ультрафиолетового света спало, и процесс формирования воды ускорился.

Это исследование показывает, что спустя всего один миллиард после Большого Взрыва, наша Вселенная имела богатую среду для производства воды, несмотря на низкое содержание воды. Это подготовило почву для более поздних эпох, когда возле более поздних звезд начали формироваться планеты, где вода уже присутствовала.

Источник

Ученые: вода во Вселенной возникла до формирования Солнечной системы

Согласно новому исследованию ученых из университета штата Мичиган, опубликованному в журнале Science, около 30-50% воды, которая есть на Земле, на льдах комет, на дисках вокруг Сатурна и метеоритов появилось еще до рождения Солнца.

Ученые утверждают, что вода возникла в молекулярном облаке – туманности, в которой возникло Солнце миллионы лет назад. Чтобы это доказать, астрономы провели компьютерное моделирование химических процессов формирования Солнечной системы. Модель содержала два вида воды: обычную воду и «тяжелую» воду, которую можно найти в кометах, метеоритах, океанах Земли и в других космических телах.

Обычная вода содержала водород, в то время как «тяжелая» содержала изотоп дейтерия, который отличается количеством нейтронов от водорода и формируется в холодных условиях. Ученые провели повторное моделирование без включения «тяжелой» воды, таким образом Солнечная система должна была сформировать воду с нуля. Они обнаружили, что система не смогла достичь такого количества дейтерия, который был найден в пробах воды Солнечной системы.

Выводы, сделанные из этих исследований, довольно интересны. Если вода формировалась локально в каждой звездной системе, то ее количество, а также количество химических элементов, необходимых для формирования жизни, может варьироваться от системы к системе.

Однако, если верить исследованиям, каждая планетарная система получила воду от туманности, таким образом, количество воды и химических элементов во всех системах должно быть приблизительно одинаковым. А это, в свою очередь, наталкивает нас на мысль, что где-то в космосе может существовать планетарная система, похожая на нашу Солнечную систему.

Источник

Как во Вселенной появилась вода: доказанные теории и новые гипотезы

Москва, 04.07.2021, 13:50:09, редакция ПРОНЕДРА.РУ, автор Елена Даниленко.

Вода в космосе — сложная тема. Обнаружение воды на Марсе стало очень громким открытием. Однако, она находится там в основном в состоянии пара. Есть также немного льда. На Красной планете очень низкое давление, которое не способствует существованию жидкой воды.

Так где же найти воду во Вселенной? Учёные уверяют, что в нашей солнечной системе воды довольно много. НАСА в настоящее время готовится отправить зонд в космос, чтобы исследовать Юпитер и ответить на вопрос, сколько там воды.

Кроме того, существует гипотеза, что воду в космосе можно найти на пяти планетах за пределами Солнечной системы.

Вода во Вселенной появилась значительно раньше, чем предполагалось

До сих пор в научном мире считалось, что вода во Вселенной должна была появиться сравнительно недавно, после нескольких поколений звёзд. Недавние исследования показывают, что это произошло намного раньше. И воды было довольно много.

Читайте также:  Вселенная с точки зрения философии это

Ранее учёные полагали, что первое поколение звёзд, появившихся после Большого взрыва, образовалось из водорода и гелия. Большинство других, более тяжёлых элементов, образовалось намного позже. Они появились в ядрах первых звёзд. И только после прекращения существования некоторых звёзд, сверхновые, более тяжелые элементы мигрировали в межзвёздное пространство. Это создало газовые облака. Но они были бедны кислородом — его содержание было намного ниже, чем, например, в нашей сегодняшней Галактике.

Последнее исследование группы учёных из Гарвардского университета и Тель-Авивского университета, опубликованное в Astrophysical Journal Letters, доказывает, что, несмотря на относительно небольшое количество кислорода, вода во Вселенной образовалась намного раньше, чем мы думали. Вполне вероятно, что водяной пар появился, спустя миллиард лет после Большого взрыва. По мнению команды учёных, это может иметь решающее значение для определения сроков существования жизни во Вселенной.

«Разработанная нами теоретическая модель позволяет предположить, что молекулярные облака молодых галактик могли содержать значительное количество водяного пара. И это несмотря на то, что уровень кислорода там в тысячи раз ниже, чем в нашей галактике сегодня», — сказал Шмуэль Бяли, аспирант в Тель-Авивском университете и ведущий автор исследования.

Учёные проанализировали химические реакции, которые могут создать воду в среде с низким содержанием кислорода. Оказалось, что при температуре около 27 градусов по Цельсию этот процесс чрезвычайно эффективен, и даже при недостатке кислорода может быть получено значительное количество воды.

«Вселенная была теплее, чем сегодня, и поэтому газовые облака не могли охлаждаться», — считает профессор Амиэль Штернберг из Тель-Авивского университета.

«Температура космического фонового излучения была намного выше. Плотность газа также была выше, чем сейчас», — добавляет профессор Ави Леб из Гарвардского университета.

Поскольку ультрафиолетовое излучение разрушает молекулы воды, потребовалось несколько сотен миллионов лет, чтобы достичь баланса между его образованием и распадом. Команда в своих исследованиях доказала, что такой же баланс существует и сегодня.

Также астрономы доказали, что можно производить большое количество газообразной воды без необходимости использования других тяжёлых элементов. Они рассчитали, сколько воды могло образоваться в молекулярных облаках, которые затем породили звёзды и планетные системы. В будущих исследованиях они обещали сосредоточиться на том, сколько воды в форме межзвёздного льда содержится в нашей галактике.

Как появилась вода на Земле: новая теория

Учёные из Университета штата Аризона выдвигают новую теорию о происхождении воды на нашей планете. По их мнению, кроме воды, принесённой на нашу планету астероидами и, возможно, кометами, на Земле может быть вода, которая поступила непосредственно из газов, оставшихся в окрестностях Солнца после его образования. Водород, накопленный в недрах нашей планеты, способствовал созданию водных масс.

Гипотеза, описанная в статье, опубликованной в «Журнале геофизических исследований: планеты», может помочь проанализировать процессы формирования внесолнечных планет, и оценить шансы на существование условий, способствующих возникновению там жизни.

Вопрос о том, откуда взялась вода на Земле, и как она сюда попала, по сей день не даёт учёным покоя. В настоящее время считается, что она была доставлена на нашу планету из космоса после падения на её поверхность астероидов и комет. Об этом свидетельствуют результаты исследований изотопов. Но, как утверждают учёные из Университета штата Аризона, это может быть только частью правды.

«Кометы содержат много льда и могут быть источником воды, а астероиды содержат совсем немного воды», — говорит профессор Стивен Деш.

«Вода состоит из водорода и кислорода. Поскольку на Земле много кислорода, практически любой источник водорода можно считать источником воды», — добавляет он.

Водород был ведущим компонентом солнечной туманности, из которой в конечном итоге образовалась наша звезда и планеты нашей системы.

Новый анализ показывает, что, по крайней мере, часть воды на Земле может поступать непосредственно из облаков пыли и газа, которые остались после того, как наша звезда сформировалась в так называемой солнечной туманности. Кроме того, благородные газы из-под поверхности Земли имеют изотопный состав, унаследованный от солнечной туманности.

Чтобы объяснить это, ученые сформулировали новую теоретическую модель формирования Земли. Согласно этому, миллиарды лет назад пропитанные водой астероиды стали появляться вокруг Солнца, в то время как большая часть газа и пыли осталась в форме солнечной туманности. Астероиды столкнулись и соединились вместе, создавая, среди прочего, планеты. Газы из солнечной туманности, включая водород и благородные газы, затем гравитационно притягивались к этим крупным объектам. Водород с более низким содержанием дейтерия, чем в воде, изначально присутствующей в астероидах, растворился в жидкой лаве и проник внутрь, а также в ядро ​​из расплавленного железа. Водород, богатый дейтерием, остался на поверхности.

К счастью, похоже, что менять школьные учебники не нужно. Новая теория касается образования только около 2 процентов воды на Земле. Новая теория, однако, может иметь последствия для нашего понимания формирования планет вне Солнца и нашей оценки шансов, что в космосе будут созданы условия для возникновения жизни.

Читайте также:  Жизнь во вселенной кратко презентация

Источник

Вода есть не только на Земле, но и на других планетах. Как она туда попала?

Вода есть не только на Земле, но и в космосе, например, на Луне и других планетах. Но как она туда попадает? Рассказываем, что известно об образовании космической воды, как она перемещается между планетами и зачем нужна.

Внеземная вода

Вода вне планеты Земля или хотя бы следы ее существования в прошлом являются объектами сильного научного интереса, так как предполагают существование внеземной жизни.

Земля, 71% поверхности которой покрыто водными океанами, является на данный момент единственной известной в Солнечной системе планетой, содержащей воду в жидком состоянии.

Имеются научные данные, что на некоторых спутниках планет-гигантов (Юпитера, Сатурна, Урана и Нептуна) вода может находиться под толстой корой льда, покрывающей небесное тело. Однако однозначных доказательств наличия жидкой воды в Солнечной системе, кроме как на Земле, на данный момент нет.

Океаны и вода могут иметься в других звездных системах и/или на их планетах и других небесных телах на их орбите. Например, водяной пар был обнаружен в 2007 году в протопланетном диске в 1 а. е. от молодой звезды MWC 480.

Ранее считалось, что водоемы и каналы с водой могут находиться на поверхности Венеры и Марса. С развитием разрешения телескопов и появлением других методов наблюдения эти данные были опровергнуты. Однако присутствие воды на Марсе в далеком прошлом остается темой для научных дискуссий.

Томас Голд в рамках гипотезы о Глубокой горячей биосферы заявлял, что многие объекты Солнечной системы могут содержать подземные воды.

Лунные моря, представляющие собой, как сейчас известно, огромные базальтовые равнины, ранее считались водоемами. Впервые некоторые сомнения относительно водной природы лунных «морей» высказал Галилей в своем « Диалоге о двух системах мира». Учитывая, что теория гигантского столкновения на данный момент является господствующей среди теорий происхождения Луны, можно сделать вывод, что на Луне никогда не было морей или океанов.

Вспышка от столкновения разгонного блока «Центавр» зонда LCROSS с Луной

В июле 2008 года группа американских геологов из Института Карнеги и Университета Брауна обнаружила в образцах грунта Луны следы воды, в большом количестве выделявшейся из недр спутника на ранних этапах его существования. Позднее большая часть этой воды испарилась в космос.

Российские ученые с помощью созданного ими прибора LEND, установленного на зонде LRO, выявили участки Луны, наиболее богатые водородом. На основании этих данных НАСА выбрало место для проведения бомбардировки Луны зондом LCROSS. После проведения эксперимента, 13 ноября 2009 года НАСА сообщило об обнаружении в кратере Кабеус в районе южного полюса воды в виде льда.

По мнению руководителя проекта Энтони Колапрета, вода на Луне могла появиться из нескольких источников: из-за взаимодействия протонов солнечного ветра с кислородом в почве Луны, принесена астероидами или кометами или межгалактическими облаками.

Согласно данным, переданным радаром Mini-SAR, установленным на индийском лунном аппарате Чандраян-1, всего в регионе северного полюса обнаружено не менее 600 млн тонн воды, большая часть которой находится в виде ледяных глыб, покоящихся на дне лунных кратеров. Вода была обнаружена в более чем 40 кратерах, диаметр которых варьируется от 2 до 15 км. Сейчас у ученых уже нет никаких сомнений в том, что найденный лед — это именно водный лед.

Венера

До того, как космические аппараты сели на поверхность Венеры, высказывались гипотезы, что на ее поверхности могут находиться океаны. Но, как выяснилось, для этого на Венере слишком жарко. В то же время в незначительном количестве водяной пар обнаружен в атмосфере Венеры.

На данный момент имеются веские основания считать, что в прошлом на Венере существовала вода. Мнения ученых расходятся лишь в отношении того, в каком состоянии она находилась на Венере. Так, Дэвид Гринспун из Национального музея науки и природы в Колорадо и Джордж Хасимото из Университета города Кобэ считают, что вода на Венере существовала в жидком состоянии в виде океанов.

Свои выводы они основывают на косвенных признаках существования гранитов на Венере, которые могут образоваться лишь при значительном присутствии воды. Однако гипотеза о вспышке вулканической активности на планете около 500 млн лет назад, которая полностью изменила поверхность планеты, затрудняет проверку данных о существовании океана воды на поверхности Венеры в прошлом. Ответ мог бы дать образец грунта Венеры.

Эрик Шасефьер из Университета Париж-Юг (Université Paris-Sud) и Колин Уилсон из Оксфордского университета считают, что вода на Венере никогда не существовала в жидком виде, но содержалась в гораздо большем количестве в атмосфере Венеры. В 2009 году с помощью зонда Venus Express были получены доказательства того, что из-за солнечного излучения большой объём воды был потерян из атмосферы Венеры в космос.

Телескопические наблюдения со времен Галилея давали ученым возможность допускать, что на Марсе есть жидкая вода и жизнь. По мере роста объема данных о планете оказалось, что воды в атмосфере Марса содержится ничтожно малое количество, и было дано объяснение феномену марсианских каналов.

Читайте также:  Вселенная дай мне подсказку

Ранее считалось, что до того, как Марс высох, он был более похожим на Землю. Открытие кратеров на поверхности планеты поколебало эту точку зрения, но последующие открытия показали, что, возможно, вода в жидком состоянии присутствовала на поверхности Марса.

Имеется гипотеза о существовании в прошлом покрытого льдом Марсианского океана.

Имеется ряд прямых и косвенных доказательств присутствия в прошлом воды на поверхности Марса или в его глубине.

  1. На поверхности Марса выявлено около 120 географических областей, носящих признаки эрозии, которая, скорее всего, протекала при участии жидкой воды. Большинство этих областей в средних и высоких широтах, причем большая их часть находится в южном полушарии. Это прежде всего дельта высохшей реки в кратере Эберсвальде. Кроме того, к этим областям можно отнести другие участки поверхности Марса, такие как Великая северная равнина и равнины Эллада и Аргир.
  2. Обнаружение марсоходом «Оппортьюнити» гематита — минерала, который не может образоваться в отсутствие воды.
  3. Обнаружение марсоходом «Оппортьюнити» горного обнажения Эль-Капитан. Химический анализ слоистого камня показал содержание в нем минералов и солей, которые в земных условиях образуются во влажной теплой среде. Предполагается, что когда-то этот камень находился на дне марсианского моря.
  4. Обнаружение марсоходом «Оппортьюнити» камня «Эсперанс-6» ( Esperance 6), в результате исследования которого был сделан вывод, что несколько миллиардов лет назад этот камень находился в потоке воды. Причем эта вода была пресной и пригодной для существования в ней живых организмов.

Остается открытым вопрос, куда ушла большая часть жидкой воды с поверхности Марса.

Вода за пределами Солнечной системы

Большинство из более чем 450 обнаруженных внесолнечных планетных систем сильно отличаются от нашей, что позволяет считать нашу Солнечную систему принадлежащей к редкому типу. Задачей современных исследований является обнаружение планеты размером с Землю в обитаемой зоне своей планетной системы (зоне Златовласки).

Кроме того, океаны могут находиться и на крупных (размером с Землю) спутниках планет-гигантов. Хотя сам по себе вопрос существования столь крупных спутников является дискуссионным, телескоп Кеплера обладает достаточной чувствительностью, чтобы обнаружить их. Имеется мнение, что каменистые планеты, содержащие воду, сильно распространены по всему Млечному Пути.

Откуда появляется вода?

Водород почти так же стар, как сама Вселенная: его атомы появились, как только температура новорожденной Вселенной упала настолько, что смогли существовать протоны и электроны. С тех пор водород уже 14,5 млрд лет остается самым распространенным элементом Вселенной и по массе, и по числу атомов. Облака газа, состоящие в основном из водорода, заполняют весь космос.

В результате гравитационного коллапса облаков водорода и гелия появились первые звезды, внутри которых начался термоядерный синтез и образовались новые элементы, в том числе кислород. Кислород и водород дали воду; первые ее молекулы могли сформироваться сразу после появления первых звезд — 12,7 млрд лет назад. В форме очень рассеянного газа она заполняет межзвездное пространство, охлаждая его и таким образом приближая рождение новых звезд.

Вода, присутствовавшая в породившем звезду облаке газа, переходит в вещество протопланетного диска и объектов, которые формируются из него, – планет и астероидов. В конце жизни самые массивные звезды взрываются сверхновыми, оставляя после себя туманности, в которых вспыхивают новые звезды.

Как вода перемещается между небесными телами?

Новая гипотеза связывает наличие воды на Луне с действием «земного ветра» — потока частиц, выброшенных сюда магнитосферой нашей планеты.

Вода может появляться и непосредственно на Луне. Согласно одной из новых перспективных гипотез, протоны солнечного ветра достигают ее поверхности, не защищенной ни атмосферой, ни магнитосферой, как наша Земля. Здесь они взаимодействуют с оксидами в составе минералов, образуя новые молекулы воды и постоянно пополняя запас улетучивающейся в космос влаги.

Тогда в периоды, когда Луна оказывается ненадолго укрыта от солнечного ветра, количество воды на ее поверхности должно уменьшаться. Компьютерное моделирование предсказывает, что за несколько дней в районе полнолуния, когда спутник проходит сквозь длинный вытянутый «хвост» земной магнитосферы, содержание воды на высоких широтах должно падать очень заметно.

Этот процесс рассмотрели авторы новой статьи. С помощью данных, собранных японским окололунным зондом Kaguya, они регистрировали изменения в потоке солнечного ветра, «омывающего» спутник. А наблюдения индийского аппарата Chandrayaan-1 помогли оценить распределение воды в приполярных регионах. Однако результаты оказались довольно неожиданными: никаких существенных изменений в количестве льда в положенные дни не происходит.

Поэтому ученые выдвигают другую гипотезу происхождения воды на Луне, не связанную с эффектами солнечного ветра. Дело в том, что магнитосфера Земли также способна направлять протоны и поливать лунную поверхность не меньшим количеством частиц, чем солнечный ветер: хотя и далеко не так сильно ускоренными. Поток содержит и протоны, и ионы кислорода из верхних слоев земной атмосферы. Этого «земного ветра» может быть достаточно для образования новых молекул воды на Луне.

Ученые планируют продолжить свои исследования Луны с помощью более мощной техники, чтобы найти лучшие регионы для будущих исследований спутника, а также добычи полезных ископаемых.

Источник

Adblock
detector