Меню

Когда вселенная станет черной дырой

Битва титанов: как черная дыра столкнулась с нейтронной звездой

Большая международная группа астрономов отчиталась в журнале Astrophysical Journal Letters о первых наблюдениях за столкновением и слиянием черной дыры с нейтронной звездой. Два подобных события были зафиксированы с разницей всего 10 дней. Подробное изучение этих катаклизмов может многое рассказать о самых экзотических объектах во Вселенной.

Когда пространство волнуется

Нейтронные звезды и черные дыры — вероятно, самые необычные объекты во Вселенной. Первые отличаются чудовищной плотностью: при массе порядка солнечной они имеют диаметр в считанные километры. Кубический сантиметр такого вещества весит сотни миллионов тонн. У вторых плотность вообще теоретически бесконечна, так что у них даже поверхности нет, а есть горизонт событий — граница невозврата, из-за которой не может вырваться даже свет.

Ученым очень далеко до того, чтобы воспроизвести что-нибудь подобное в лаборатории. Зато эти объекты, возникшие на испытательных полигонах самой природы, дают физикам возможность проникнуть в самые глубокие свойства материи. Свой интерес и у астрономов, ведь нейтронные звезды и черные дыры — это остатки светил, взорвавшихся как сверхновые. Изучая их, можно многое узнать о том, как рождаются, живут и умирают звезды.

В 2015 году в исследовании этих сгустков сверхплотной материи была открыта новая глава — впервые были зафиксированы гравитационные волны от столкновения двух черных дыр.

Гравитационная волна — это колебание пространства-времени, которое слегка меняет расстояния между предметами. Если такая волна накроет нас за утренним кофе, стол, за которым мы сидим, будет периодически становиться то ближе, то дальше. И это даже трудно будет назвать движением в обычном смысле: будет меняться сама дистанция между двумя точками в пространстве.

Правда, мы этого не почувствуем. Изменения расстояний незаметны даже в микроскоп, потому что гравитационные волны необычайно слабы. Идея приборов, все же способных их фиксировать, была выдвинута советскими учеными Михаилом Герценштейном и Владиславом Пустовойтом еще в 1960-х, но лишь полвека спустя технологии развились достаточно, чтобы осуществить этот замысел.

Расположенная в США пара детекторов LIGO регистрирует изменение расстояний на величину, которая много меньше диаметра протона. Этот дуэт, обошедшийся в $365 млн, настолько чувствителен, что фиксирует даже квантовые шумы, не говоря уж о таких «огромных» воздействиях, как движение молекул в деталях прибора. Третий и пока последний действующий детектор гравитационных волн — расположенный в Италии VIRGO. Еще один подобный инструмент под названием KAGRA строится в Японии.

Теоретически гравитационные волны порождает любое тело, движущееся с ускорением, так что окружающее пространство буквально переполнено ими. На практике даже такие шедевры инженерной мысли, как LIGO и VIRGO, фиксируют лишь самые мощные гравитационные всплески, порожденные масштабными космическими катастрофами — столкновениями черных дыр или нейтронных звезд.

Давным-давно в далекой галактике

На сегодняшний день обнаружены уже десятки всплесков гравитационных волн. Почти все порождены столкновениями черных дыр друг с другом, в результате которых они сливаются в единую черную дыру. Физики очень ценят эти наблюдения. Благодаря им, например, совсем недавно подтвердилось теоретическое предсказание Стивена Хокинга, что площадь горизонта событий никогда не уменьшается, что бы ни происходило с черной дырой.

Большим открытием стало первое столкновение двух нейтронных звезд, зафиксированное в 2017 году. Подобные «ДТП», в отличие от столкновений черных дыр, порождают не только гравитационные волны, но и вспышку, которую можно наблюдать в телескопы. Астрономы изучили это событие во всех возможных диапазонах, от радиоволн до гамма-лучей, и выяснили много интересного. Правда, специалисты до сих пор спорят, что же получилось при слиянии двух столкнувшихся объектов — нейтронная звезда или черная дыра.

Не хватало лишь гибридного варианта: столкновения нейтронной звезды с черной дырой, при котором участники «ДТП» сливаются и превращаются в новую черную дыру. Правда, однажды наблюдалось слияние черной дыры с телом, о котором трудно было сказать наверняка, является оно нейтронной звездой или черной дырой. Это случилось 14 августа 2019 года. Эксперты были почти уверены, что в черную дыру врезалась именно звезда, СМИ запестрели заголовками, но в итоге выяснилось, что небесное тело было подозрительно массивным, на грани возможного для нейтронной звезды. Так что, вполне возможно, это была все-таки черная дыра, пусть и самая легкая в истории наблюдений.

Читайте также:  Части тела вселенная внутри нас

Теперь же астрономы объявили сразу о двух событиях, которые надежно классифицируются как гибридные. Удивительно, но они были обнаружены друг за другом с разницей всего в 10 дней. Первый всплеск гравитационных волн достиг Земли 5 января 2020 года, а второй — 15 января. По традиции, эти события обозначили GW200105 и GW200115. Здесь GW означает «гравитационные волны» (gravitational waves), а цифры маркируют дату события.

Всплеск GW200105 был вызван тем, что нейтронная звезда массой от 1,7 до 2,2 солнечной столкнулась и слилась с черной дырой массой от 7,4 до 10,1 солнечной. Это произошло в 550–1270 млн световых лет от Земли. Для сравнения: расстояние от Млечного Пути до галактики Андромеды составляет всего 2,5 млн световых лет. Даже при минимальной оценке дистанции получается, что по земному времени катастрофа произошла еще до наступления палеозойской эры. И только теперь гравитационные волны достигли Земли, при том, что они движутся со скоростью света.

Ученые не могут точно сказать, где именно случился древний катаклизм. Во время наблюдения был включен лишь один из пары детекторов LIGO, а для менее чувствительного VIRGO сигнал оказался слишком слабым. Поэтому направление на источник сигнала было определено не слишком точно. Область неба, в которой он мог бы находиться, по площади в 34 тысячи раз больше полной Луны.

А вот всплеск GW200115 «видели» все три действующих детектора, так что «подозрительный» участок неба куда меньше — всего 2900 полных лун. В этом катаклизме нейтронная звезда массой 1,2–2,2 солнечной врезалась в черную дыру массой от 3,6 до 7,5 солнечной. А случился он в 650–1470 млн световых лет от Земли.

У экспертов нет единого мнения, порождает ли столкновение черной дыры с нейтронной звездой видимую вспышку. Несколько телескопов прозондировали области неба, из которых пришли сигналы GW200105 и GW200115, но не нашли ничего примечательного.

Зато благодаря долгожданному открытию специалисты оценили, как часто происходят подобные катаклизмы. Оказалось, что это воистину редкие птицы. В кубе пространства с ребром в один гигапарсек (3,26 млрд световых лет!) случается лишь от 10 до 120 подобных катастроф в год. Правда, это если считать, что измеренные в событиях GW200105 и GW200115 массы типичны для участников столкновений «нейтронная звезда + черная дыра». Допуская более широкий диапазон масс, ученые получили чуть более оптимистичные оценки: от 60 до 240 катаклизмов.

Теперь исследователям предстоит подробно изучить данные, собранные о гравитационных всплесках GW200105 и GW200115. Возможно, они расскажут о свойствах черных дыр или нейтронных звезд что-нибудь новое и интересное.

Мнение редакции может не совпадать с точкой зрения автора

Источник

Спросите Итана №50: почему Вселенная не превратилась в чёрную дыру?

Учитывая, что вся эта материя и вся энергия были так тесно собраны в одном месте, и были такими плотными в момент Большого взрыва – почему же Вселенная не реколлапсировала?

“Es ist immer angenehm, über strenge Lösungen einfacher Form zu verfügen.” (Всегда приятно иметь в своём распоряжении точное решение в простом виде)
– Карл Шварцшильд

Хотя у меня нет особых сомнений в том, что теория Большого взрыва корректна, или, как вы бы сказали, неплохо аппроксимирует произошедшее, есть одна вещь, о которой я размышляю, когда думаю об этой части космологии. Есть ли объяснение тому, что Вселенная не превратилась сразу в чёрную дыру? Полагаю, что изначальная её плотность была гораздо выше предела Шварцшильда.

Мы уже обсуждали этот вопрос, но вам нужны дополнительные детали и ответ получше, чем я тогда давал. Вернёмся к моменту рождения самой успешной теории гравитации, ОТО, на 100 лет назад.

До Эйнштейна признанной теорией гравитации был ньютоновский закон всемирного тяготения. Все гравитационные явления Вселенной, от ускорения масс на Земле, до орбит лун вокруг планет и обращения самих планет вокруг Солнца, были описаны его теорией. Объекты оказывали равные и противоположно направленные силы притяжения при взаимодействии друг с другом, они ускорялись обратно пропорционально массе, а силы подчинялись универсальному закону обратных квадратов. К 1900-м годам закон был отлично проверен, и из него не было найдено исключений. Ну, точнее, среди тысяч и тысяч успешных испытаний, их практически не было найдено.

Читайте также:  Что такое языковая вселенная

Но для прозорливых умов и тех, кто интересовался деталями, существовала парочка проблем.

1. На очень больших скоростях, приближающихся к скорости света, ньютоновские представления об абсолютных пространстве и времени уже не справлялись. Радиоактивные частицы жили дольше, расстояния сжимались, а масса не являлась основным источником притяжения – эта честь, казалось, переходила к энергии, а масса являлась лишь одной из её форм.

2. В очень сильных гравитационных полях — по крайней мере, если из-за этого Меркурий был особой планетой в нашей Солнечной системе, обращаясь вокруг Солнца – предсказания Ньютона о гравитационном поведении объектов немного, но заметно, отличались от наблюдений. Казалось, что если сильно приблизиться к очень массивным источникам, появлялась дополнительная сила притяжения, которую ньютоновская гравитация не учитывала.

После всего этого появилось две разработки, проложивших дорогу новой теории, пришедшей на замену ньютоновской – гениальной, но очень старой концепции, описывающей принципы работы Вселенной.

Первой разработкой учёных стало то, что пространство и время, ранее считавшимися раздельными сущностями (трёхмерное пространство и линейное время) были объединены в математическом аппарате, создавшем четырёхмерное пространство-время. Это в 1907 году сделал Герман Минковский:

Взгляды на пространство и время, которые я хочу изложить вам, выросли на почве экспериментальной физики, и в этом их сила. […] Следовательно, пространству самому по себе, и времени самому по себе, суждено исчезнуть в тенях, и только лишь объединение их двоих сохранится в роли независимой реальности.

Это работало только для плоского евклидового пространства, но идея была чрезвычайно мощной с точки зрения математики, и её неизбежным следствием стали все законы ОТО. Когда эту идею применили к задаче с орбитой Меркурия, ньютоновское предсказание с учётом нового аппарата слегка приблизилось к наблюдаемым параметрам, но всё-таки не дотянуло до них.

Вторую разработку проделал сам Эйнштейн, и это была идея, что пространство-время не плоское, а искривлённое. И тем самым фактором, определяющим кривизну пространства-времени, было присутствие энергии во всех её проявлениях, включая массу. Будучи опубликованным в 1915 году, аппарат Эйнштейна был ужасно сложен в использовании для расчётов, но дал всем учёным огромные возможности для моделирования физических систем на новом уровне точности.

Пространство-время Минковского соответствовало пустой Вселенной, не содержащей энергию и материю любых типов.

Эйнштейну удалось найти решение, в котором во Вселенной была единственная точечная масса, с условием, что вы находитесь вне этой точки. Оно сводилось к ньютоновским предсказаниям на больших дистанциях, но давало более точные данные на малых. Результаты не только сошлись с наблюдением орбиты Меркурия, которую ньютоновская гравитация не предсказала, но и позволили сделать новые предположения об искривлении солнечного света, которые можно увидеть при полном солнечном затмении – эти предсказания были подтверждены позднее, во время затмения 1919 года.

Но есть и ещё одно решение, неожиданное и интересное, вышедшее всего через несколько недель после публикации Эйнштейном ОТО. Карл Шварцшильд проработал детали того, что случается в конфигурации с единственной точечной массой произвольной величины, и то, что он нашёл, было поразительно:

  • На больших расстояниях решение Эйнштейна работает, и сводится к ньютоновским результатам
  • Но очень близко к массе, на расстоянии R = 2M в естественных единицах, вы достигаете точки, откуда ничто не может убежать – горизонта событий.
  • Более того, всё внутри горизонта событий неизбежно коллапсирует к центральной сингулярности, что является неизбежным следствием теории Эйнштейна.
  • И, наконец, любая изначальная конфигурация стационарной пыли, которая имеет нулевую начальную скорость и не сталкивается сама с собой, вне зависимости от распределения плотности, неизбежно сколлапсирует в стационарную чёрную дыру.

Это решение, метрика Шварцшильда, было первым полным и нетривиальным решением ОТО.

Запомним всё вышесказанное и перейдём к сути вопроса: как насчёт горячей, плотной ранней Вселенной, где вся материя и энергия, сейчас размазанная по 92 миллиардам световых лет пространства, содержалась в объёме, не большем нашей Солнечно системы?

Читайте также:  Вселенная это наше воображение

Но нужно иметь в виду, что, подобно пространству-времени Минковского, решение Шварцшильда статичное, то есть в нём метрика пространства не меняется с течением времени. Но существует много других решений – пространство де Ситтера, метрика Фридмана-Робертсона-Уокера, описывающие пространство-время, которые расширяются или сжимаются.

Если бы мы начали с материи и энергии, которые содержались во Вселенной на ранних стадиях Большого взрыва, и наша Вселенная была бы не расширяющейся, а статичной, а также в ней не было бы частиц с ненулевой скоростью, и частицы не сталкивались бы друг с другом – вся эта энергия сформировала бы шварцшильдовскую чёрную дыру очень быстро, практически мгновенно. Но в ОТО есть ещё одна важная загвоздка: кроме того, что наличие материи и энергии определяет кривизну пространства, всё, что есть в этом пространстве, определяет и эволюцию самого пространства-времени!

Что самое удивительное, нам известно, что с момента Большого взрыва у нашей Вселенной есть только три возможных варианта развития, в зависимости от присутствующих в ней материи и энергии и начальной скорости расширения.

  • Скорость расширения могла бы быть недостаточно большой для того количества материи и энергии, которое в ней присутствует. Это значит, что Вселенная расширялась бы некий достаточно короткий промежуток времени, достигла бы максимального размера, а затем начала бы сжиматься. Было бы некорректно, хотя и очень хочется, сказать, что она сколлапсировала бы в чёрную дыру, поскольку само пространство сжималось бы вместе с материей и энергией, и породило бы сингулярность под названием Большое сжатие (Большой хруст, Big Crunch).
  • С другой стороны, скорость расширения могла бы быть слишком большой для присутствующего во Вселенной количества материи и энергии. В этом случае вся материя и энергия расходились бы со скоростью слишком большой для того, чтобы гравитация собрала вместе все компоненты Вселенной, и в большинстве моделей Вселенная расширяется слишком быстро для формирования галактик, планет, звёзд или даже атомов и атомных ядер. Такая Вселенная была бы пустым и одиноким местом.
  • А есть ещё зона Златовласки, или случай, где Вселенная как раз находится на самой грани между реколлапсированием (что случилось бы, если бы в ней был хоть один лишний протон) и расширением в никуда (если бы в ней было на один протон меньше), и вместо этого она асимптотически приближается к состоянию, в котором скорость расширения падает до нуля, но никогда не превращается в обратное сжатие.

Получается, что мы живём почти в зоне Златовласки, но с добавлением небольшого количества тёмной энергии, которая чуть увеличивает скорость расширения, и это значит, что, в конце концов вся материя, гравитационно не связанная вместе, разлетится в стороны и исчезнет в бездне глубокого космоса.

Удивительно здесь то, сколько точных настроек должно было случиться, чтобы скорость расширения Вселенной и плотность материи и энергии совпали так хорошо, чтобы мы ни сколлапсировали сразу обратно, ни расширились так, чтобы не суметь сформировать основных кирпичиков для построения материи. Вероятность этого составляет примерно один к 10^24, и примерно равна вероятности, с которой два человека, подсчитав количество электронов, содержащихся в них, выяснили бы, что они идентичны с точностью до электрона. Если бы мы отправились назад во времени в тот момент, когда возраст Вселенной составлял лишь наносекунду с момента Большого взрыва, мы смогли бы численно подсчитать, насколько хорошо настроены плотность и скорость расширения.

По моему мнению, довольно невероятная история!

И, тем не менее, именно так и можно описать нашу Вселенную, которая не сколлапсировала сразу, и не расширялась слишком быстро, чтобы в ней не смогли сформироваться сложные структуры. Вместо этого она дала возникнуть всему чудесному разнообразию ядерных, атомных, молекулярных, клеточных, геологических, планетарных, звёздных, галактических и кластерных явлений, которые мы можем наблюдать. Удачно, что мы существуем, и что мы узнали всё, что мы узнали, и что вовлечены в процесс дальнейшего познания: в науку.

Источник

Adblock
detector