Фотон тратит сотни тысяч лет, чтобы выбраться к поверхности Солнца
Скорее всего, вы уже знаете, что луч света тратит чуть больше 8 минут, чтобы добраться от Солнца до Земли. Это удивительная информация, ведь, если с нашей звездой что-то случится, то мы узнаем об этом не мгновенно, а с 8-минутной задержкой. Но вы станете относиться с большим уважением к этому лучу, если узнаете, как долго ему приходится карабкаться от ядра к поверхности.
Источник жизни
К солнечному свету, да и самому светилу, стоит проявить максимальное уважение. Лишь наличие атмосферы и идеальная дистанция от Солнца позволила создать приемлемые условия для жизни. Достаточно приблизиться к Венере или отодвинуться к Марсу, чтобы оказаться в критическом состоянии жары или мороза.
Солнце по своему строению напоминает подобие луковицы с несколькими слоями. Все это активные зоны с ядерными и химическими реакциями. Поэтому крошке фотону приходится преодолеть большой путь, чтобы осветить ваше утро.
Двигаемся от ядра
Внутренняя структура Солнца. Радиационная зона охватывает 0.25-0.7 солнечного радиуса. Температура падает с отдалением от ядра. Здесь она сокращается от 7 млн. К до 2 млн. С плотностью происходит то же самое – от 20 г/см3 до 0.2 г/см3.
Солнечный центр охватывает около 25% звездного радиуса и раскаляется выше 15 млн. К. Высокая сила гравитации формирует сильный уровень давления, который сталкивает атомы водорода в ядерных реакциях синтеза.
Мощные взрывы создают энергетические вспышки высокой мощности. Они еще не напоминают известный нам свет и способны убить. Речь идет о гамма-излучении. Если бы не возникало никаких препятствий, то лучи преодолевали дистанцию к солнечной поверхности за пару секунд. Однако рожденному фотону приходится карабкаться сквозь плотный слой атомов водорода. На это уходит не меньше сотни лет.
Зона лучистого переноса
Солнечное пятно крупным планом
На 45% солнечного радиуса приходится зона лучистого переноса. Плотность материи настолько высокая, что она трансформируется в плазму. Фотоны получают энергию от ядра, преодолевают дистанцию в 1 микрон и поглощаются молекулами газа. Здесь возникает цепная реакция, которая притормаживает весь процесс.
Молекула газа раскаляется, высвобождая уже другой фотон, но при той же длине волны. Фотон снова путешествует на 1 микрон, поглощается молекулой газа, которая раскаляется и продолжает цикл. Это невероятно долгий процесс, на который могут тратиться миллионы лет. Если фотону повезет, то на дорогу сквозь этот слой уйдет в среднем 170 000 лет. Анализ показывает, что цепочка охватывает где-то 10 25 повторных поглощений-выбросов.
Мы в конвективной зоне
Добро пожаловать в наружный солнечный слой. Знаю, путешествие оказалось дольше, чем вы полагали, но и это не конец. Перед вами бурная обстановка, представленная конвекционными потоками, транспортирующими энергию наружу. Их задача – поднять горячий газ на поверхность. В это же время более прохладный материал фотосферы углубляется ниже. Здесь фотон движется быстрее. Однако на всю поездку от ядра к поверхности у него уйдет в среднем 200 000 лет (конечно, если не застряли на миллионный срок).
Постскриптум
Вот так и выходит, что после 200000-летнего путешествия фотон тратит 8 минут, чтобы погибнуть на планете, одарив ее долгожданным светом. Вот вам еще один повод более уважительно относиться к солнечной активности.
Источник
Солнце излучает частицы фотоны
Фотоны или кванты электромагнитного излучения уносят с Солнца гораздо больше энергии, чем нейтрино или все остальные частицы вместе взятые.
Солнце излучает фотоны, а их интенсивность складывается из двух составных частей: постоянной и переменной.
Постоянное излучение
Постоянная фотонная составная часть не меняется, в ней сосредоточена большая часть солнечного источника. Солнце излучает фотоны как основные элементарные частицы фотосферой, в то время как хромосфера и корона мало участвуют в данном процессе. Фотосфера активнее всего участвует в этом, излучая световые и инфракрасные кванты электромагнитного излучения.
- фотосфера – видимая часть звезды;
- хромосфера – внешняя оболочка толщиной около 10 000 км;
- корона – самая внешняя часть атмосферы выше 10 000 км.
Путь фотонов от Солнца до Земли длится всего 8 минут или попроще: свет идет от нашего светила в течение от 490 до 507 секунд.
Если солнечный фотон получил энергию от свободного электрона в фотосфере и чем больше была скорость движения электрона, тем больше получил этот фотон. Свою кинетическую и энергию связи электрон передал ему при соединении с атомом водорода.
Большинство фотонов Солнца рождается в гранулах. Можно сказать, что их родителями являются атомы водорода и электроны. В результате их соединения возникает атом водорода с отрицательным зарядом – отрицательный ион. При этом освобождается энергия электрона в виде кванта электромагнитного излучения. Собственно говоря, это – последняя стадия излучения фотона и его прощание с Солнцем. До этого в недрах светила он много раз излучался, поглощался и снова излучался…
Если электрон в фотосфере захвачен водородным атомом, он излучает всю свою энергию: связи и кинетическую. Неподвижный электрон излучает только энергию связи в виде инфракрасного фотона. Энергия такого кванта электромагнитного излучения слишком мала, так что наш глаз не может его видеть, но мы все-таки ощущаем его тепло.
Электрон, находящийся в движении, обладает кроме этого еще кинетической энергией. Чем быстрее движется электрон, тем больше его кинетическая составляющая.
Свободный электрон может обладать различной энергией. Если он находится в состоянии покоя, излученный фотон несет лишь энергию связи. Но электроны в фотосфере движутся с разной скоростью и имеют, следовательно, разную кинетическую составляющую. Поэтому возникшие фотоны обладают различной энергией. Все вместе они создают свет. Солнце излучает фотоны через фотосферу всех цветов, в том числе и инфракрасные (при участии медленных электронов) и близкие ультрафиолетовые (при участии самых быстрых электронов).
Без них мы не могли бы существовать. Поэтому человек должен знать их не столь сложную историю.
Переменное излучение
Переменная часть солнечного излучения состоит из рентгеновских лучей, иногда ионизирующее излучение в виде гамма лучей, ультрафиолетовое и радиоизлучение.
Кванты электромагнитного излучения переменной части излучаются верхними слоями солнечной атмосферы, то есть хромосферой и короной. По сравнению с постоянной, переменная часть слабее и полностью зависит от солнечной активности, прежде всего от наличия солнечных пятен и вспышек. Чем больше солнечная активность, тем больше интенсивность переменной части. Во время максимума солнечной активности интенсивность переменной части выше.
Постоянная составная абсолютно необходима для поддержания жизни на Земле, а также в качестве источника энергии. Переменная часть несет мало полезного эффекта и при том в неопределенных интервалах. Она не является необходимым условием существования жизни на Земле, напротив, это излучение может нанести ущерб здоровью человека.
Сейчас существует инструментарий, который помогает в реальном времени передавать солнечную активность. Это позволяет отслеживать и предупреждать о нежелательных сильных магнитных полях исходящих от Солнца.
Источник
Ответы на вопросы по астрономии и астрофизике (стр. 1 )
| Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 |
ОТВЕТЫ НА ВОПРОСЫ ПО АСТРОНОМИИ И АСТРОФИЗИКЕ
Анонс. Ошибочные физические теории породили обилие ошибок при интерпретации астрофизических явлений и процессов. Покажем, как новая теория микромира просто и убедительно разрушает астрофизические карточные домики «Большого взрыва», «Чёрных дыр», «Расширяющейся Вселенной» «Темной материи» и — другие астрофизические мифы.
1642. Почему плотность планет Солнечной системы, начиная от Солнца, большая, а потом уменьшается и далее вновь незначительно растёт? Анализ показывает, что плотность звёзд, в том числе и Солнца, также меняется от её центра до поверхности. Причём, закономерность этого изменения аналогична закономерности изменения плотности планет по мере их удаления от Солнца.
1643. Может ли закономерность изменения плотности планет Солнечной системы быть основой для анализа гипотезы образования планет Солнечной системы из звезды, пролетавшей мимо Солнца? Такое основание существует. Анализ этого основания, проведённый нами, показал, что результаты расчётов подтверждают достоверность гипотезы о рождении планет Солнечной системы из звезды, пролетавшей мимо Солнца. Сила инерции вовлекла эту звезду в орбитальное движение вокруг Солнца.
1644. В чём суть основного условия образования планет из звезды, вовлечённой Солнцем в орбитальное движение? Звезда находится в плазменном, слабо связанном состоянии, поэтому для разделения её на фракции необходимо, чтобы центробежная сила инерции, действовавшая на звезду в начальный момент её движения вокруг Солнца, была больше силы гравитации Солнца. Результаты расчётов, представленные в табл. на рис. 178, подтверждают наличие такого условия.
Результаты убедительно показывают, что на всех орбитах современных планет, в момент прихода к ним частей звезды, из которой они рождались, центробежная сила инерции была больше силы гравитации Солнца.
Конечно, есть основания полагать, что первозданные радиусы планетарных орбит были больше современных. В результате и центробежные силы инерции были больше тех, что представлены в табл. на рис. 178, а гравитационные силы Солнца, действовавшие на первозданные планеты, меньше. Это усиливало эффект отделения более прочно связанной ядерной части плазмы звезды от менее связанной между собой верхней её части. В результате верхняя, менее плотная часть плазмы звезды, удалялась силой инерции, от основной её части. Удаляющаяся часть плазмы звезды могла потерять более мелкие порции плазмы и из них формировались спутники планет, в том числе и Луна.
1645. Но ведь расчёты показывают, что у дальних от Солнца планет разница между силой инерции и силой гравитации Солнца меньше, чем у планет с меньшими радиусами орбит. Как это влияло на описанный процесс образования планет? Дело в том, что в расчёте использованы современные радиусы орбит планет. Есть основания полагать, что за миллионы лет они стали меньше первоначальных. Поэтому, если величины этих орбит были большими, то у каждой планеты была больше и разница между центробежной силой инерции и гравитационной силой Солнца, и описанный процесс имел большую гарантию для реализации.
1646. Известно, что мощность Солнечного излучения на единицу земной поверхности равно . Поскольку эту мощность формируют фотоны, излучаемые электронами Солнца и имеющими массу, то можно ли определить массу, унесённую фотонами за время существования Солнца? Можно. Мы уже приводили этот расчёт. Повторим его детальнее.
1647. Чему равна кинетическая энергия и мощность фотона из середины светового спектра, зелёного фотона, например? Эти величины рассчитываются просто. Масса зелёного фотона равна . Его кинетическая энергия —
. Она численно равна мощности фотона
.
1648. Сколько световых зелёных фотонов формируют указанную тепловую мощность на каждом квадратном сантиметре поверхности Земли? Разделив тепловую мощность
, формируемую световыми фотонами на каждом квадратном сантиметре поверхности Земли, на мощность
одного (зелёного) фотона, получаем
. (223)
1649. Чему равна площадь сферы с орбитальным радиусом Земли?
. (224)
1650. Сколько фотонов излучает Солнце в секунду на поверхность сферы с орбитальным радиусом Земли?
. (225)
1651. Чему равна масса фотонов, излучаемых Солнцем в секунду на внутреннюю поверхность сферы с орбитальным радиусом Земли?
. (226)
Наше Солнышко излучает в секунду количество только световых, зелёных фотонов, общая масса которых равна 4,55 миллиона тонн. Страшная цифра.
1652. Чему равна масса световых фотонов, излучённых электронами Солнца за время его существования?
. (227)
1653. Для расчёта была взята масса одного фотона из всего спектра. А если учесть фотоны всего спектра, излучаемого Солнцем то, на сколько порядков увеличится поученный результат (227)? Точный ответ представить трудно, но ясно, что реальная суммарная масса фотонов всего солнечного спектра излучённая им за время существования, больше, полученной величины (227).
1654. Чему равна масса современного Солнца?
. (228)
1655. Где берут электроны Солнца массу для излучённых фотонов? Источник один – разряжённая субстанция, равномерно заполняющая всё космическое пространство, названная эфиром.
1656. Значит ли это, что электрон после каждого излучения фотона восстанавливает свою массу, поглощая эфир? Это пока — единственная приемлемая гипотеза, которая помогает получить ответы на. обилие других вопросов о микромире.
1657. Следует ли из приведённых фактов, что основным источником тепловой энергии является разряжённая субстанция физического вакуума, называемая эфиром? Пока — это гипотеза, но обилие последующих экспериментальных фактов будет усиливать её достоверность, и недалёк тот день, когда мировое научное сообщество будет вынуждено признать эту гипотезу достоверным научным постулатом.
1658. Почему реликтовое излучение имеет наибольшую интенсивность в миллиметровом диапазоне? Реликтовое излучение формируется процессами излучения фотонов при синтезе атомов. При этом максимальное количество фотонов, заполняющих космическое пространство, излучается с радиусом (длиной волны), равным (рис. 178, формула -1).
1659. Какой источник формирует реликтовое излучение? Источником реликтового излучения являются звезды Вселенной.
1660. Какой процесс формирует максимум реликтового излучения? Максимум реликтового излучения формирует процесс рождения атомов водорода в звездах Вселенной.
1661. Почему реликтовое излучение формируется процессом синтеза атомов водорода? Потому что количество водорода во Вселенной 73%, гелия 24% и 3% — всех остальных химических элементов. К тому же энергии связи электронов атома гелия с его ядром близки по значению к энергии связи электрона атома водорода с протоном. В результате процесс синтеза атомов гелия также вносит свой вклад в формирование реликтового излучения.
1662. Почему реликтовое излучение формируется при температуре, близкой к абсолютному нулю? Потому что в единице объёма Вселенной максимальное количество фотонов имеют радиусы, близкие к их максимальным значениям. В Природе нет большего количества фотонов с большими радиусами для формирования более низкой температуры.
1663. Связано ли реликтовое излучение с Большим взрывом? Реликтовое излучение не имеет никакого отношения к вымышленному Большому взрыву.
1664. Какова природа всего диапазона реликтового излучения? Диапазон реликтового излучения формируется процессами рождения атомов и молекул водорода и процессами их охлаждения и сжижения.
1665. Сколько максимумов имеет зона реликтового излучения? Три явных максимума А, В и С (рис. 179). Максимум А формирует процесс рождения атомов водорода при удалении от звёзд свободных электронов и протонов.
1666. Какие процессы формируют другие два максимума (В и С) реликтового излучения с меньшей интенсивностью и меньшей длиной волны (рис. 179)? Два других максимума (рис. 179, В и С,) формируются процессами рождения и сжижения молекул водорода. Известно, что атомарный водород переходит в молекулярный в интервале температур . Длины волн фотонов, излучаемых электронами атомов водорода при формировании его молекулы, будут изменяться в интервале
. Это — границы максимума излучения Вселенной, соответствующего точке С (рис. 179). Далее, молекулы водорода проходят зону температур, при которой они сжижаются. Она известна и равна Т=33К. Поэтому есть основания полагать, что должен существовать ещё один максимум излучения Вселенной, соответствующий этой температуре. Радиус фотонов (длина волны), формирующих этот максимум, равен
. Этот результат совпадает с максимумом в точке
(рис. 179).
Рис. 179. Зависимость плотности реликтового
излучения Вселенной от длины волны:
теоретическая – тонкая линия;
экспериментальная – жирная линия
1667. Что является причиной анизотропии реликтового излучения и какое глобальное следствие следует из этого? Поскольку зафиксировано отсутствие реликтового излучения, которое занимает менее 1% сферы Вселенной, то это указывает на наличие в ней зон без звёзд и галактик и может быть отождествлено с локализацией материального мира во Вселенной.
1668. Почему с уменьшением длины волны реликтового излучения резко увеличиваются расхождения между экспериментальными и теоретическими результатами (рис. 179)? Потому, что с уменьшением длины волны излучения резко увеличивается разность плотности таких фотонов во Вселенной, как в полости черного тела, для которого выведена формула Планка.
1669. Чему равна максимальная температура во Вселенной и можно ли определить это теоретически и экспериментально? Современная наука не имеет точных ответов на эти вопросы.
1670. Почему все звёзды излучают непрерывный спектр со всеми цветами радуги? Потому что энергии связи всех электронов атомов, соответствующие первым энергетическим уровням, сдвинуты друг относительно друга на небольшие величины. Например, энергии связи первых электронов, первых химических элементов, соответствующие первым энергетическим уровням, имеют такие значения. У атома водорода E1=13,598eV; у атома гелия E1=13,468eV; у атома лития E1=14,060eV; у атома бериллия E1=16,170eV; у атома бора E1=13,350eV и так далее. Вполне естественно, что сдвинуты энергии связей всех остальных электронов каждого атома не только на первом, но и на всех остальных энергетических уровнях. В результате и формируется сплошное излучение со всеми цветами радуги.
1671. Есть ли основания полагать, что у спектров самых новых звёзд при их рождении будут преобладать линии излучения атомов водорода и гелия? Конечно, основания для этого имеются, так как атомы водорода и гелия самые простые и они первыми рождаются в новых, молодых звёздах и астрофизики устойчиво регистрируют этот факт.
1672. Соответствует ли название сверхновая звезда реальности? Нет, конечно, не соответствует. Как установлено, некоторые звёзды в процессе своей эволюции сжимаются и вновь взрываются. Их назвали сверхновыми. Правильнее было бы назвать их сверхстарые, а вновь рождающиеся звёзды с яркими линиями излучения атомов и молекул водорода и гелия надо назвать новыми или сверхновыми.
1673. Максимальна ли температура на поверхности новых водородных звёзд? Нет, не максимальна, так как энергия ионизации атома водорода меньше энергии ионизации атома гелия, который рождается вторым.
1674. Чему равна температура на поверхности сверхновой водородной звезды? Закон Вина указывает на то, что энергия ионизации атома водорода, равная 13,598 eV, соответствует температуре 31780 К.
1675. Рождение атомов гелия увеличивает температуру на поверхности звезды? Да, увеличивает. Если её формируют фотоны, соответствующие энергии ионизации первого электрона атома гелия =24,587 eV, то она равнялась бы 57284 К, а если второго электрона с энергией ионизации 54,40eV, то – 127200 К. Такую температуру формирует совокупность фотонов, примерно, середины ультрафиолетового диапазона (табл. 38).
Таблица 38. Диапазоны изменения радиусов (длин волн ) и энергий
фотонных излучений
Радиусы (длины волн) , м
Источник