Сколько атомов во Вселенной?
Вселенная > Сколько атомов во Вселенной?
Наверняка, каждый знает, что Вселенная представляет собою масштабное место. По общим оценкам, перед нами открывается лишь 93 миллиарда световых лет («Видимая Вселенная»). Это огромное число, особенно если не забывать, что это лишь та часть, которая доступна нашим приборам. И, учитывая подобные объемы, не будет странным предположить, что и количество вещества должно быть также значительным.
Интересно начать изучение вопроса с крошечных масштабов. Ведь наша Вселенная вмещает 120-300 секстиллионов звезд (1.2 или 3 х 10 23 ). Если же мы увеличим все до уровней атомов, то эти цифры покажутся просто немыслимыми. Сколько же атомов во Вселенной?
По подсчетам выходит, что Вселенную наполняют 10 78 -10 82 атомов. Но даже эти показатели не отображают того, сколько именно вещества она содержит. Выше упоминалось, что мы можем постичь 46 миллиардов световых лет в любую сторону, а это значит, что нам не увидеть всей картинки. К тому же, Вселенная постоянно расширяется, что отдаляет от нас объекты.
История Вселенной началась с Большого Взрыва
Не так давно, немецкий суперкомпьютер выдал результат о существовании 500 миллиардов галактик в зоне видимости. Если обратиться к консервативным источникам, то получим 300 миллиардов. В одной галактике может вместиться 400 миллиардов звезд, поэтому общее количество во Вселенной способно достигать 1.2 х 10 23 – 100 секстиллионов.
Средний вес звезды – 10 35 грамм. Общая масса – 10 58 грамм. Вычисления показывают, что в каждом грамме содержится 10 24 протонов или столько же атомов водорода (в одном водороде – один протон). В сумме получаем 10 82 водорода.
За основу берем видимую Вселенную, в пределах которой это количество должно распределиться равномерно (на 300 миллионов световых лет). Но в меньших масштабах материя будет создавать скопления светящейся материи, о которой мы все знаем.
Если обобщить, то большая часть атомов Вселенной сосредоточена в звездах, создающих галактики, те объединяются в скопления, которые в свою очередь формируют сверхскопления и завершают все это образованием Великой Стены. Это при увеличении. Если пойти в обратную сторону и взять меньшие масштабы, то скопления наполнены облаками с пылью, газом и прочей материей.
Временная шкала Вселенной за 13.7 миллиардов лет и расширение
Вещество имеет тенденцию распространяться изотропно. То есть, все небесные участки одинаковые и в каждом содержится одно и то же количество. Пространство насыщено волною мощного изотропного излучения, приравниваемого к 2.725 К (чуть выше абсолютного нуля).
Об однородной Вселенной гласит космологический принцип. Основываясь на нем, можно утверждать, что законы физики будут одинаково действенными в любой точке Вселенной и не должны нарушаться в крупных масштабах. Эта идея подпитывается и от наблюдений, демонстрирующий эволюцию вселенской структуры после Большого Взрыва.
Исследователи пришли к согласию, что большая часть материи образовалась в момент Большого Взрыва, и расширение не прибавляет нового вещества. Механизмы последних 13.7 миллиардов лет – это расширение и рассеивание основных масс.
Но теория усложняется эквивалентностью массы и энергии Эйнштейна, формирующейся из общей теории относительности (прибавление массы постепенно увеличивает количество энергии).
Заметно, что плотность атомов больше слева (старт эксперимента), чем в 80 миллисекундном отрезке после «воссозданного» Большого Взрыва.
Однако, плотность Вселенной остается стабильной. Современная достигает 9.9 х 10 30 грамм на см 3 . Здесь сосредоточено 68.3% темной энергии, 26.8% темной материи и 4.9% светящегося вещества. Получается, что плотность – один атом водорода на 4 м 3 .
Ученые все еще не могут расшифровать свойства темной энергии и материи, так что нельзя сказать точно: распределены ли они равномерно или же образуют плотные сгустки. Но полагают, что темная материи замедляет расширение, а вот темная энергия работает на ускорение.
Все указанные числа, касательно количества атомов во Вселенной, – приблизительная оценка. Не стоит забывать главную мысль: мы говорим о вычислениях видимой Вселенной.
Источник
Каких частиц во Вселенной больше всего?
Каких частиц в видимой части нашей Вселенной больше всего? Физик-теоретик Дон Пейдж пишет в своем эссе, что в ней преобладают гравитоны, число которых может достигать 10 112 . Давайте разберемся, как он пришел к такому заключению.
NASA / JPL-Caltech / Harvard-Smithsonian Center for Astrophysics
Первым делом разберемся с «обычными» элементарными частицами, в существовании которых сомневаться не приходится, — протонами, электронами, фотонами и нейтрино. Для этого вычислим их среднюю концентрацию, а потом умножим на объем видимой части Вселенной.
Для удобства будем считать все величины в планковских единицах, в которых постоянная Планка, гравитационная постоянная, постоянная Больцмана, скорость света и коэффициент пропорциональности в законе Кулона полагаются равными единице: ħ = G = k = c = 4πε = 1. Если в тексте не указано, в чем именно измеряется размерная величина (например, плотность или расстояние), это значит, что она измеряется в планковских единицах. Кроме того, придерживаясь современных космологических представлений, предположим, что эволюция Вселенной описывается метрикой Фридмана-Леметра-Робертсона-Уолкера, в которой масштабный параметр a(t) растет степенным образом на ранних этапах и экспоненциально на поздних. Другими словами, эволюцию молодой Вселенной определяет материя, а старой — темная энергия:
Здесь t — это возраст Вселенной, а H∞ — значение постоянной Хаббла в такой далекий момент времени, когда темная энергия окончательно «перевесит» материю. Найти это значение несложно, поскольку оно определяется космологической постоянной Λ = 3H∞ 2 , величина которой в планковских единицах примерно равна Λ ≈ 3π/5 3 2 100 ≈ 2,9 × 10 −122 . Это дает значение примерно в 1,2 раз меньше текущей постоянной Хаббла H0.
Важно заметить, что наблюдаемая Вселенная с хорошей точностью является плоской (собственно, этот факт уже учтен в выписанной метрике). Это значит, что плотность нашей Вселенной близка к критической и ее можно вычислить из общих соображений: ρ = ρcr = 3H0 2 /8πG ≈ (13/3000) × 2 −400 . Учитывая, что вклад барионной материи в эту плотность составляет всего 4,5 процента, и принимая во внимание, что бо́льшая часть барионов — это протоны, можно найти среднюю плотность барионов в видимой Вселенной: nb ≈ 1,06 × 10 −105 . Это отвечает примерно одной частице на четыре кубических метра. Поскольку в среднем материя не заряжена, среднюю плотность электронов также можно оценить этой величиной.
В то же время средняя плотность фотонного газа nγ напрямую связана с его температурой — если быть более точным, nγ ≈ 0,24 × Tγ 3 . Поскольку температура реликтового излучения известна и примерно равна Tγ ≈ (160/3 8 ) × 2 −100 (в привычных единицах Tγ ≈ 2,7 Кельвина), мы можем вычислить значение для средней плотности фотонов: nγ ≈ 1,73 × 10 −96 . Если перевести это в привычные единицы, то получится, что в одном кубическом сантиметре находится около 747 фотонов. Аналогичные оценки для нейтрино примерно в 1,2 раза меньше и составляют nν ≈ 1,42 × 10 −96 .
Теперь попробуем оценить среднюю плотность гравитонов. Поскольку аналог реликтового излучения для гравитонов должен иметь гораздо меньшую температуру, плотность гипотетических частиц будет меньше плотности фотонов, если предположить, что их функции распределения совпадают. С другой стороны, квантовые флуктуации во время инфляции могли вызвать образование большого числа низкочастотных гравитонов, плотность которых превысила бы плотность частиц с более высокими частотами. Оценим частоту таких гравитонов наименьшей возможной величиной, то есть предположим, что длина их волны сравнима с радиусом наблюдаемой Вселенной R: ω = π/R ≈ 1,18 × 10 −61 . В таком случае средняя плотность гравитонов будет примерно равна ng ≈ H* 2 H0 2 /2π 2 ω, где H* — такое значение постоянной Хаббла, при которой длина волны гравитонов превысила текущий размер Хаббла H0 −1 .
С другой стороны, выражение для плотности гравитонов можно переписать через плотность инфляционной потенциальной энергии V* = 3H* 2 /8π. Величина этой энергии зависит от амплитуды тензорных возмущений, возникавших во время инфляции. На данный момент явных свидетельств в пользу существования таких возмущений нет. Тем не менее, полностью их исключить тоже нельзя: последние измерения группы Plank ограничивают отношение амплитуд тензорных и скалярных возмущений во время инфляции величиной r −72 ≲ 2,5 × 10 −73 .
Наконец, оценим объем Вселенной, чтобы перевести плотность частиц в их количество. Расстояние до самой далекой наблюдаемой структуры (реликтового излучения) составляет примерно 46 миллиардов световых лет, или примерно R ≈ 2,65 × 10 61 в планковских единицах. Заметим, что здесь нет противоречия с тем, что возраст Вселенной равен всего 13,8 миллиарда лет. Предполагая, что видимая часть Вселенной имеет форму шара, мы легко находим ее объем: V ≈ 7,85 × 10 184 . Умножая на него вычисленные ранее плотности, находим число частиц в видимой Вселенной:
- Число барионов Nb ≈ 9,34 × 10 79
- Число фотонов Nγ ≈ 1,36 × 10 89
- Число нейтрино Nν ≈ 1,11× 10 89
- Число «обычных» частиц Nparticle ≈ 2,48 × 10 89
- Число гравитонов Ng ≈ 2,0 × 10 112 ≈ 8,0 × 10 22 × Nparticle
Таким образом, число гравитонов значительно (более чем на двадцать порядков) превосходит число «обычных» частиц. Правда, экспериментальных подтверждений их существования пока что нет (если не считать гравитационные волны, которые можно объяснить и без привлечения новых частиц). Более того, маловероятно, что они появятся в ближайшее время — для рождения гравитонов нужны огромные энергии, не достижимые на современных коллайдерах. Тем не менее, если гравитоны все-таки существуют, похоже, что Вселенная состоит в основном из них.
Источник
Сколько всего элементарных частиц во Вселенной?
Фанатичным математикам, обожающим подсчитывать всё на свете, давно хотелось узнать ответ на фундаментальный вопрос: сколько всего частиц во Вселенной? Учитывая, что приблизительно 5 триллионов атомов водорода могут поместиться на одной лишь головке булавки, при этом каждый из них состоит из 4 элементарных частиц (1 электрон и 3 кварка в протоне), можно с уверенностью предположить, что число частиц в наблюдаемой Вселенной находится за гранью человеческого представления.
Как бы то ни было, профессор физики Тони Падилла из Нотингемского университета разработал способ оценки общего количества частиц во Вселенной, не принимая в расчет фотоны или нейтрино, поскольку у них отсутствует (вернее, практически отсутствует) масса:
Для своих расчетов ученый использовал данные, полученные с помощью телескопа Планка, которые использовались для измерения реликтового излучения, являющегося самым старым из видимого светового излучения во Вселенной и, таким образом, формирующего подобие ее границы. Благодаря телескопу, ученые смогли оценить плотность и радиус видимой Вселенной.
Другая необходимая переменная – это доля вещества, содержащаяся в барионах. Эти частицы состоят из трех кварков, и наиболее известными барионами на сегодняшний день являются протоны и нейтроны, а потому в своем примере Падилла рассматривает именно их. Наконец, для расчета необходимо знание масс протона и нейтрона (которые примерно совпадают друг с другом), после чего можно приступать к вычислениям.
Что делает физик? Он берет плотность видимой Вселенной, умножает ее на долю плотности одних лишь барионов, а затем умножает результат на объем Вселенной. Получившуюся в результате массу всех барионов во Вселенной он делит на массу одного бариона и получает общее количество барионов. Но барионы нам не интересны, наша цель – элементарные частицы.
Известно, что каждый барион состоит из трех кварков – как раз они-то нам и нужны. Более того, общее число протонов (как все мы знаем из школьного курса химии) равно общему числу электронов, которые тоже являются элементарными частицами. Помимо этого, астрономы установили, что 75% вещества во Вселенной представлено водородом, а оставшиеся 25% — гелием, прочими же элементами при расчетах такого масштаба можно пренебречь. Падилла вычисляет количество нейтронов, протонов и электронов, после чего умножает две первые позиции на три – и у нас наконец есть итоговый результат.
3.28х10 80 . Более трех вигинтиллионов.
Самое интересное, что, с учетом масштаба Вселенной, эти частицы не заполняют даже большую часть от ее общего объема. В результате, на один кубометр Вселенной приходится лишь одна(!) элементарная частица.
Источник
Сколько атомов во Вселенной?
Вселенная огромна. Поскольку мы не можем выйти и посчитать каждую частицу, число атомов во Вселенной является оценочным. Это значение никакое не случайное или выдуманное, оно вычислено.
Напомню, атом-это наименьшая составная единица обычной материи. Каждое твердое тело, жидкость, газ и плазма состоят из атомов . Типичный размер атома — десять миллиардных метра.
Как вычисляется число атомов
Расчет количества атомов предполагает, что Вселенная конечна и имеет относительно однородный состав. Это основано на нашем понимании Вселенной, которую мы видим. Вселенная — множество галактик, каждая из которых содержит звезд.
Если окажется, что таких множеств галактик больше, то и число атомов будет намного больше, чем текущая оценка. Если Вселенная бесконечна, то она состоит из бесконечного числа атомов .
Телескоп Хаббл видит край скопления галактик, за которым ничего нет. Поэтому нынешняя концепция Вселенной — это конечный размер с известными характеристиками.
Наблюдаемая Вселенная состоит примерно из 100 миллиардов галактик . В среднем, каждая галактика содержит около 10 в степени 23 звезд .
Звезды бывают разных размеров, но типичная звезда, как и Солнце, имеет массу около 2 х 10 в степени 30 килограммов.
Большая часть массы активной звезды состоит из водорода. Считается, что 74% массы Млечного Пути, содержится в виде атомов водорода. Солнце содержит приблизительно 10 в степени 57 атомов.
Если вы умножите число атомов звезды ( 10 в степени 57 ) на расчетное число звезд во Вселенной ( 10 в степени 23 ), вы получите значение 10 в степени 80 атомов в наблюдаемой Вселенной.
Существуют и другие оценки, основанные на различных расчетах размера Вселенной. Например, на измерениях космического микроволнового фонового излучения.
Оценки количества атомов варьируются от 10 в степени 78 до 10 в степени 82 атомов. Они сильно различаются, что указывает на значительную степень ошибки.
Эти оценки основаны на достоверных данных. Поэтому они верны на основе того, что нам известно. Пересмотренные оценки будут делаться по мере того, как мы больше будем узнавать о Вселенной.
Обязательно подписывайтесь, Вам также понравится:
Великая загадка Вселенной
Звёздное желе. Необъяснимый природный феномен
10 загадочных древних открытий, которые наука до сих пор не может объяснить
Источник