Сколько тепла и света получает земля от солнца
Мы уже видели, как много энергии излучает Солнце в окружающее его мировое пространство. Но только менее одной двухмиллиардной доли её поступает к нам на Землю. Подавляющее же большинство солнечной энергии рассеивается в космическом пространстве без всякого полезного для нас действия. Но и падающее на нашу планету количество солнечной энергии очень велико. Его вполне достаточно, чтобы обеспечить все важнейшие процессы, происходящие на земной поверхности. Если бы эта доля солнечного излучения была увеличена примерно на 30 процентов, то климатические условия на Земле изменились бы настолько сильно, что даже на широте Москвы могли бы произрастать тропические растения.
Можно ли определить, сколько тепла поступает от Солнца на Землю в настоящее время? Можно.
Количество тепла, посылаемого на нашу Землю Солнцем, измеряется ежедневно при помощи специальных приборов, называемых актинометрами (рис. 17). Интенсивность солнечных лучей измеряется числом калорий, падающих на один квадратный сантиметр за одну минуту. Ежедневные и многочисленные измерения тепла, приносимого солнечными лучами на земную поверхность, показывают, что при условии, если бы эти лучи падали строго отвесно и вокруг Земли не было бы атмосферы, то каждый квадратный сантиметр земной поверхности получал бы, по расчётам, в течение минуты около двух малых калорий (точнее, 1,90). Измерения, проводимые на протяжении многих десятков лет, не обнаружили заметных изменений в интенсивности солнечных лучей. Поэтому это число (две калории), характеризующее интенсивность солнечных лучей, называется солнечной постоянной.
Но если мы будем измерять интенсивность солнечных лучей, падающих на земную поверхность, окружённую толстым слоем атмосферы, как это есть в действительности, мы увидим, что доходящее до нас количество солнечного тепла непостоянно, что оно всё время меняется под влиянием непрерывных процессов, происходящих в земной атмосфере. Кроме того, разные области земного шара получают неодинаковое количество солнечного тепла; области, расположенные ближе к экватору, получают его больше, области, расположенные ближе к полюсам, — меньше. Это объясняется, главным образом, тем, что солнечные лучи падают на поверхность Земли под различными углами, и потому одни из них более, а другие менее интенсивны. При отвесном падении одно и то же количество лучей приходится на меньшую площадку земной поверхности, чем при наклонном. В экваториальных и близких к ним областях солнечные лучи в середине дня падают на земную поверхность отвесно и потому являются более интенсивными. В полярных и околополярных областях лучи падают всегда наклонно, они как бы скользят по земной поверхности, и потому здесь они менее интенсивны. При наклонном падении
Источник
Какую часть энергии Солнца получает Земля?
Солнце – это огромный огненный шар, который является основным источником тепла не только для Земли, но и для других планет Солнечной системы. Сколько же энергии светило дает нашей планете?
Общая мощность солнечного излучения, падающего на Землю, составляет 174 ПВт. Эта величина сопоставима с мощностью 174 млн атомных реакторов ВВЭР-1000, работающих круглосуточно! Одним словом, это очень большая величина. Мощность – это количество энергии, вырабатываемой в единицу времени. То есть каждую секунду Земля получает от Солнца 174 ПДж энергии, или примерно 5 млрд КВт•ч.
Эта цифра кажется огромной, но на самом деле это лишь миллионная часть той энергии, которая вырабатывается Солнцем с помощью термоядерных реакций.
Надо отметить, что примерно 6 % солнечного света просто отражается от атмосферы планеты. Также отражает солнечный свет и поверхность Земли, особенно ее ледовые шапки, расположенные на полюсах. Вообще у каждого небесного тела есть величина, называемое «альбедо» – это доля света, отражаемого телом в космос. У Земли альбедо равно 0,367, то есть в итоге она отражает 36,7% света, падающего на неё.
Солнечная энергия распределяется по земле неравномерно. В районе экватора свет падает на поверхность под прямым углом, поэтому там наблюдаются наиболее высокие температуры. На полюса же свет падает под углом, поэтому в этих районах температуры минимальны.
Излучения Солнца является важнейшим источником энергии для Земли. Если бы Солнце вдруг погасло, то температура Земли в течение года упала бы до –73° С, а со временем достигла бы –240° С. Также солнечный свет является основой почти всей жизни на Земле. Растения в процессе фотосинтеза используют свет звезды и поглощают углекислый газ из атмосферы, в результате чего они и растут. В свою очередь выросшие растения служат пищей для животных, то есть являются начальным звеном почти всех пищевых цепочек. Только некоторые одноклеточные существа могли бы выжить, если бы реакции фотосинтеза вдруг остановились бы.
Список использованных источников
Источник
Тепловой баланс Земли
Теплово́й бала́нс Земли́ — баланс энергии процессов теплопередачи и излучения в атмосфере и на поверхности Земли. Основной приток энергии в систему атмосфера—Земля обеспечивается излучением Солнца в спектральном диапазоне от 0,1 до 4 мкм . Плотность потока энергии от Солнца на расстоянии 1 астрономической единицы равен около 1367 Вт/м² (солнечная постоянная). По данным за 2000—2004 годы [1] усреднённый по времени и по поверхности Земли этот поток составляет 341 Вт/м² [2] [3] , или 1,74·10 17 Вт в расчёте на полную поверхность Земли.
Содержание
Составляющие теплового баланса
Основной приток энергии к Земле обеспечивается солнечным излучением и составляет около 341 Вт/м² в среднем по всей поверхности планеты. Внутренние источники тепла (радиоактивный распад, стратификация по плотности) по сравнению с этой цифрой незначительны (около 0,08 Вт/м² ) [2] .
Из 341 Вт/м² солнечного излучения, попадающего на Землю, примерно 30 % ( 102 Вт/м² ) сразу же отражается от поверхности Земли ( 23 Вт/м² ) и облаков ( 79 Вт/м² ), а 239 Вт/м² в сумме поглощается атмосферой ( 78 Вт/м² ) и поверхностью Земли ( 161 Вт/м² ) [1] . Поглощение в атмосфере обусловлено, в основном, облаками и аэрозолями [2] .
Из 161 Вт/м² поглощаемой поверхностью Земли энергии 40 Вт/м² возвращается в космическое пространство в виде теплового излучения диапазона 3–45 мкм , ещё 97 Вт/м² передаются атмосфере за счёт различных тепловых процессов ( 80 Вт/м² — испарение воды, 17 Вт/м² — конвективный теплообмен). Кроме того, около 356 Вт/м² излучения Земли поглощается атмосферой, из которых 333 Вт/м² возвращается в виде обратного излучения атмосферы. Таким образом, полное тепловое излучение поверхности Земли составляет 396 Вт/м² (356+40), что соответствует средней тепловой температуре 288 К (15 °С) [1] [2] .
Атмосфера излучает в космическое пространство 199 Вт/м² , включая 78 Вт/м² , полученные от излучения Солнца, 97 Вт/м² , полученные от поверхности Земли, и разность между поглощаемым атмосферой излучением поверхности и обратным излучением атмосферы в объёме 23 Вт/м² [1] .
Внутреннее тепло Земли
Внутренние источники тепла Земли менее значительны по мощности, чем внешние. Считается, что основными источниками являются: распад долгоживущих радиоактивных изотопов (уран-235 и уран-238, торий-232, калий-40), гравитационная дифференциация вещества, приливное трение, метаморфизм, фазовые переходы [4] .
Средняя плотность теплового потока по земному шару составляет 87±2 мВт/м² или (4,42±0,10)·10 13 Вт в целом по Земле [5] , то есть примерно в 5000 раз меньше, чем средняя солнечная радиация. В океанских районах этот показатель составляет в среднем 101±2 мВт/м² , в континентальных — 65±2 мВт/м² [5] . В глубоководных океанических желобах она меняется в пределах 28-65 мВт/м² , на континентальных щитах — 29-49 мВт/м² , в областях геосинклиналей и срединно-океанических хребтах может достигать 100-300 мВт/м² и более [4] . Около 60 % теплового потока ( 2,75·10 13 Вт ) приходится на внутренние источники тепла [6] , остальные 40 % обусловлены остыванием планеты.
Согласно измерениям нейтринного потока из недр Земли, на радиоактивный распад приходится 24 ТВт ( 2,4·10 13 Вт ) внутреннего тепла [7] .
См. также
Примечания
- ↑ 12345Kevin E. Trenberth, John T. Fasullo, and Jeffrey Kiehl, March 2009: Earth’s global energy budget. — Bulletin of the American Meteorological Society, 90, 311–323.
- ↑ 1234 Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
- ↑ Центральное сечение земного шара ( S = πR² ), на которое приходится тепловой поток от Солнца, в 4 раза меньше площади поверхности ( S = 4πR² ), откуда средний тепловой поток на единицу поверхности земли в 4 раза меньше солнечной постоянной: 341 Вт/м² ≈ 1367/4
- ↑ 12Геотермия — Горная энциклопедия
- ↑ 12Pollack, H. N., S. J. Hurter, and J. R. Johnson (1993), Heat flow from the Earth’s interior: Analysis of the global data set, Rev. Geophys., 31(3), 267-280.
- ↑Van Schmus W.R. Natural radioactivity of the crust and mantle, AGU Handbook of Phisical Constants, edited by T.J. Ahrens, Am. Geophys Un., Washington, D.C., 1994.
- ↑Ядерный распад дает половину тепла Земли — infox.ru, 18.07.2011.
Ссылки
- J. T. Kiehl and Kevin E. Trenberth, February 1997: Earth’s Annual Global Mean Energy Budget. — Bulletin of the American Meteorological Society, 78, 197—208.
- Тепловой баланс Земли (Физическая энциклопедия)
- Тепловой баланс атмосферы (Физическая энциклопедия)
- Кондратьев К. Я., Радиационные факторы современных измерений глобального климата. Л., 1980.
- Кондратьев К. Я., Биненко В. И., Влияние облачности на радиацию и климат, Л., 1984; Климатология, Л., 1989.
- Details of Earth’s energy balance — stanford.edu.
- Glenn WhiteSystematic Errors and Surface Fluxes in the NCEP Global Model. — noaa.gov.
- A. ZastawnyParametric model of the Earth’s radiation budget. — Meteorol. Atmos. Phys. 85, 275—281 (2004). DOI 10.1007/s00703-003-0017-z.
- Earth’s Radiant Energy Balance and Oceanic Heat Fluxes. — oceanworld.tamu.edu.
- On the Global Average IR Radiation Budget. — miskolczi.webs.com.
- Jeffrey L. Anderson et al.The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations. — Submitted to Journal of Climate, March 2003.
- Global Heat Flow — International Heat Flow Commission (IHFC).
- Global Heat Flow — International Heat Flow Commission (IHFC).
- Don L. AndersonEnergetics of the Earth and the Missing Heat Source Mystery — www.mantleplumes.org.
- A.M. Hofmeister, R.E. CrissEarth’s heat flux revised and linked to chemistry. Tectonophysics 395 (2005), 159—177.
- Henry N. Pollack, «Earth, heat flow in, » in AccessScience, ©McGraw-Hill Companies, 2008.
- J. H. Davies and D. R. DaviesEarth’s surface heat flux. Solid Earth, 1, 5-24, 2010.
- Carol A. SteinHeat Flow of the Earth, AGU Handbook of Phisical Constants, edited by T.J. Ahrens, Am. Geophys Un., Washington, D.C., 1994.
Wikimedia Foundation . 2010 .
Смотреть что такое «Тепловой баланс Земли» в других словарях:
Тепловой баланс Земли — Тепловой баланс Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических… … Большая советская энциклопедия
ТЕПЛОВОЙ БАЛАНС ЗЕМЛИ — баланс энергии тепловых и радиац. процессов в атмосфере и на поверхности Земли. Осн. приток энергии в систему атмосфера Земля обусловлен солнечным излучением в спектральном диапазоне от 0,1 до 4 мкм (коротковолновая радиация КВР). Он… … Физическая энциклопедия
ТЕПЛОВОЙ БАЛАНС АТМОСФЕРЫ — соотношение прихода и расхода энергии в атмосфере Земли. Т. б. а. является составляющей теплового баланса Земли. Спецификой Т. б. а. является многослойность, к рая обеспечивает сложное распределение (стратификацию) темп ры в атмосфере З е м л и… … Физическая энциклопедия
ТЕПЛОВОЙ БАЛАНС СИСТЕМЫ ЗЕМЛЯ-АТМОСФЕРА — тепловой баланс Земли, алгебраическая сумма тепла, получаемого Землей в целом (вместе с атмосферой) от внешних источников и отдаваемого через атмосферу в космическое пространство. За длительное время тепловой баланс системы земля атмосфера равен… … Экологический словарь
Тепловой баланс (физич.) — Тепловой баланс, сопоставление прихода и расхода (полезно использованной и потерянной) теплоты в различных тепловых процессах. В технике Т. б. используется для анализа тепловых процессов, осуществляющихся в паровых котлах, печах, тепловых… … Большая советская энциклопедия
Тепловой баланс — I Тепловой баланс сопоставление прихода и расхода (полезно использованной и потерянной) теплоты в различных тепловых процессах (См. Тепловой процесс). В технике Т. б. используется для анализа тепловых процессов, осуществляющихся в паровых … Большая советская энциклопедия
ТЕПЛОВОЙ БАЛАНС — сопоставление прихода и расхода тепловой энергии при анализе тепловых процессов. Составляется как при изучении природных процессов (тепловой баланс атмосферы, океана, земной поверхности и Земли в целом и др.), так и в технике в различных тепловых … Большой Энциклопедический словарь
ТЕПЛОВОЙ БАЛАНС — ТЕПЛОВОЙ БАЛАНС, баланс между теплом, полученным земной атмосферой от солнца, и теплом, возвращаемым назад в космос. Около двух третей солнечного изучения поглощается облаками, атмосферой и поверхностью Земли и, примерно одна треть, отражается, в … Научно-технический энциклопедический словарь
Тепловой баланс моря — Тепловой баланс моря, соотношение прихода и расхода теплоты в море, основными составляющими которого являются: радиационный баланс, турбулентный и конвективный теплообмен моря с атмосферой, потеря теплоты на испарение, перенос её течениями. Кроме … Большая советская энциклопедия
тепловой баланс — сопоставление прихода и расхода тепловой энергии при анализе тепловых процессов. Составляется как при изучении природных процессов (тепловой баланс атмосферы, океана, земной поверхности и Земли в целом и др.), так и в технике в различных тепловых … Энциклопедический словарь
Источник