Меню

Кондиционеры работают от солнца

Солнечное охлаждение: система кондиционирования воздуха от Солнца

Главная страница » Солнечное охлаждение: система кондиционирования воздуха от Солнца

Солнечное охлаждение технологически вполне допустимо, если использовать энергию Солнца в системе, построенной по схеме чиллера. Строительство такой системы предусматривает пассивное преобразование солнечной энергии в виде тепла (или фотоэлектрическое). Солнечная система кондиционирования воздуха обещает играть всё более значимую роль в будущих проектах зданий разного назначения с нулевым потреблением энергии.

Энергия солнца на службе социума

Свет и тепло, выделяемое солнечным диском, люди стремились использовать под собственные нужды с древних времён. Поэтому неудивительно, что за прошедшие годы появились масса технологий, которые стабильно совершенствуются. Солнечное излучение, наряду с вторичными источниками энергии:

составляют значимую долю возобновляемой энергии. Между тем, социум использует крайне малую часть доступных природных ресурсов.

Производство электричества от солнечной энергии основано на тепловых двигателях и фотоэлектрических устройствах. Использование солнечной энергии ограничено лишь человеческой изобретательностью. Неполный список применений включает:

  • отопление и охлаждение помещений,
  • дистилляция и дезинфекция питьевой воды,
  • дневное освещение,
  • производство горячей воды,
  • варка и высокотемпературное технологическое тепло для промышленных целей.

Для сбора солнечной энергии наиболее распространенным способом является использование батарей (аккумуляторов). Солнечные технологии охлаждения разделяют на:

Конкретная характеристика зависит от методики сбора, преобразования, распределения энергии Солнца. Активные технологии включают использование фотоэлектрических панелей и тепловых коллекторов. Пассивные технологии предусматривают:

  • максимум ориентации объекта на Солнце;
  • подбор материалов, подходящих по свойствам рассеивания тепловой массы или света;
  • проектирование пространств с естественной циркуляцией воздуха.

Мощная система солнечного охлаждения. Такие конструкции, как правило, используются для промышленных нужд – обслуживают целые фабрики и предприятия

Помимо всего прочего, существует идея использования солнечной энергии напрямую для производства охлаждённой воды. Высокая температура, необходимая для абсорбционных чиллеров, обеспечивается солнечными желобами. Система не требует «стратегических» материалов (как для фотоэлектрических устройств), обеспечивает пиковое производство в момент пикового спроса.

Солнечное охлаждение по абсорбционному принципу

Абсорбционный холодильник представляет конструкцию, где применяется источник тепла для обеспечения энергией, требующейся в дальнейшем для активации системы охлаждения. Абсорбционные холодильники — реальная альтернатива компрессорным охладителям, когда на первый план выходят:

  • дефицит электричества,
  • дороговизна системы,
  • шум компрессора,
  • выработка избыточного тепла.

Конструкции абсорбционных машин, аналогично компрессорным системам, работают на хладагенте с низкой температурой кипения (-18ºC). Применительно к тому или иному типу, когда хладагент испаряется, отводится некоторое количество тепла, чем обеспечивается охлаждающий эффект.

Различия между двумя типами машин

Отличительные черты машин заключается в технологии трансформации газовой фазы хладагента в жидкую фазу и обратно (холодильный цикл). Машина с компрессором наращивает давление газа за счёт электропривода, двигающего поршни компрессора.

Нагретый газ под высоким давлением проходит конденсатор, где путём теплообмена с охлаждающей средой (обычно с воздухом) переходит в жидкое состояние. Жидкость за счёт разницы давлений поступает в испаритель, где преобразуется в паровую фазу.

Схема (распространённая) установки солнечного охлаждения: 1 – солнечный коллектор; 2 – циркуляционный насос; 3 – напорный теплообменник; 4 – абсорбционный охладитель; 5 – градирня; 6 – охлаждающие панели

Абсорбционный охладитель работает несколько иначе в плане преобразования фаз хладагента из одной в другую. Здесь для производства всей работы требуется только источник тепла и, что примечательно, не предусматривается применение движущихся частей конструкции (за исключением отдельных моментов).

Следующее различие между машинами – тип применяемого хладагента. Компрессионные машины традиционно работают на фреонах. Машины же абсорбционного типа, как правило, заправляются аммиаком или подобными агентами.

Рабочие циклы адсорбционных машин и тепловых насосов строятся на эффекте адсорбции газообразного хладагента с низким давлением, с последующим эффектом десорбции под нагреванием. Адсорбент, по сути — «химический компрессор», приводом которого выступает тепло.

Читайте также:  Землей или солнцем сильнее притягивает луна землю

Конструкционные особенности «насоса» системы

Адсорбционный «насос» охлаждающей системы содержит:

  • солнечный коллектор,
  • конденсатор (теплообменник),
  • испаритель.

Внутренняя область солнечного коллектора заполнена метанолом и адсорбционным материалом — активированным углём.

Классическая схема абсорбционной машины: 1 – генератор (нагреватель); 2 – аммиачный пар с водой; 3 – водяной сепаратор; 4 – конденсатор; 5 – испаритель; 6 – абсорбер (поглотитель)

Корпус адсорбционной машины заполняется водой, изолируется. Активированным углём обеспечивается значительный объём адсорбции паров метанола при температуре окружающей среды. Однако десорбция требует более высоких температур (около 100ºC).

Под воздействием солнечного тепла конструкция коллектора нагревается. Происходит десорбция метанола из активированного угля, нагрев, испарение. Пары направляются в область испарителя, где конденсируются в жидкую фазу.

Применение газообразного гелия рабочим агентом

Газообразный гелий также допустимо использовать рабочим агентом в температурном диапазоне 4ºK и выше. Циркуляция гелия выполняется термически зависимыми «сорбционными насосами», заправленными активированным углём. Примером такой системы является обеспечение охлаждающей мощностью камер холодильников серии «AST».

Фаза парообразного сверхтекучего гелия (3Не) снимается из содержимого смеси жидкости (4Не) и её изотопа (3Не). Сверхтекучий гелий (3He) адсорбируется на поверхности углерода при низкой температуре (обычно Система осушения конструкции солнечного охладителя

Поглотитель влаги представляет собой гигроскопичное вещество (селикагель или другое), вызывающее (поддерживающее) состояние сухости на уровне локальной среды (внутренней области герметичного контейнера).

Примерно таким внешне выглядит поглотитель влаги. Гигроскопическое вещество загружается в специальный контейнер (фильтр), который является частью абсорбционной системы

Обычно практикуемые упакованные осушители представлены твёрдыми веществами, действующими путём абсорбции или адсорбции воды. Поглотители влаги специального назначения могут иметь форму, отличную от твёрдой, и действовать на основе других принципов, например, химического связывания молекул воды.

Предварительно упакованный осушитель чаще всего используется для удаления чрезмерной влажности, способной ухудшать или разрушать продукты, чувствительные к влаге. В качестве осушителей используются:

  • дриерит,
  • силикагель,
  • сульфат кальция,
  • хлорид кальция,
  • монтмориллонитовая глина,
  • молекулярные сита.

Обычный рис тоже является распространённой, но «нетехнологичной» альтернативой, часто используемой, например, в солонках для поддержания зернистости столовой соли, эффективной россыпи или встряхивания.

Поваренную соль также можно рассматривать эффективным осушителем. Это вещество в течение тысячелетий использовалось для приготовления освобождённых от влаги продуктов, а также для мумификации тел умерших.

Хладагенты на системное охлаждение

Чиллер, предназначенный для охлаждения пара, использует хладагент в качестве рабочей жидкости. Доступны многие варианты хладагентов. Однако при выборе чиллера под охлаждение необходимо соответствовать требованиям к температуре охлаждения и характеристикам охлаждения хладагента. Важными параметрами для рассмотрения являются рабочие температуры и давления.

Холодильные агенты чиллерных систем, которые могут использоваться в системах солнечного охлаждения, представлены широким ассортиментом на современном рынке

Существует несколько факторов окружающей среды, которые касаются хладагентов, а также влияют на будущую готовность к применению в чиллерах под охлаждение. Это является ключевым фактором в периодических применениях, где чиллер может работать 25 лет и более. Однако приходится учитывать факт истощения озона атмосферы, что ведёт к глобальному потеплению климата.

Фреон — торговая марка семейства галогеналкановых хладагентов, выпускаемых разными компаниями мира. Эти хладагенты обычно использовались для охлаждения по причине превосходных свойств стабильности и безопасности. Фреоны не относятся к легковоспламеняющимся веществам и явно токсичным, как жидкости, которые фреоны заменили (например, диоксид серы). Однако хладагенты, используемые для охлаждения, содержащие хлор, способны накапливаться в атмосфере. В стратосфере фреоны распадаются под влиянием УФ-излучения, высвобождая атомы хлора.

Эти атомы хлора действуют как катализаторы разрушения озона, чем наносят серьёзный ущерб озоновому слою, призванному защищать поверхность Земли от сильного ультрафиолетового излучения Солнца. Хлор остаётся активным катализатором до момента связи с другой частицей и последующим образованием стабильной молекулы.

Читайте также:  Капитаны команды квн утомленные солнцем

Хладагенты фреоны включают в производственный ассортимент продукты R-11 и R-12. Более новые хладагенты, обладающие уменьшенным эффектом разрушения озонового слоя, включают R-22, R-134a и аналогичные. Тем не менее, использование фреонов сохраняет значительным потенциал глобального потепления.

Более новые хладагенты, такие как сверхкритический диоксид углерода, известный под маркой R-744, в настоящее время являются объектом исследований. Подобного рода вещества имеют аналогичную эффективность по сравнению с существующими соединениями на основе фреонов и потенциал глобального потепления уже на много порядков ниже.

Видео создания солнечного охлаждения частного дома

Размещённый ниже видеоролик наглядно показывает, как своими руками можно соорудить систему охлаждения (кондиционирования) для частного дома, применяя энергию солнца. Для домашнего хозяйства такой подход позволяет существенно экономить на оплате счетов за электричество:

Источник

Солнечные кондиционеры

Существует несколько видов кондиционеров, тем или иным образом использующих солнечную энергию, чтобы снизить или полностью отказаться от потребления электроэнергии из сети. О принципе работы таких устройств, получивших название «солнечные кондиционеры», и пойдет речь в этой статье.

Несмотря на некоторую абсурдность понятия «солнечный кондиционер» (традиционно солнце ассоциируется с теплом, а кондиционер — с холодом), оно вполне объяснимо, ведь именно в солнечный день потребность в кондиционировании наиболее велика. Таким образом, привязать работу кондиционера к солнцу было бы весьма логично: есть солнце — нужно охлаждение, нет — нет и потребности в холоде.

Бытовой кондиционер на солнечной батарее

Принципиально солнечные кондиционеры можно разделить на две группы. Представители первой, активные солнечные кондиционеры, используют солнечную энергию напрямую — как тепловую. В свою очередь, пассивные солнечные кондиционеры используют энергию Cолнца, преобразованную, как правило, в электричество.

Солнечные кондиционеры с влагопоглотителями

Обычно около 30 % полезной холодильной мощности кондиционера (а в некоторых случаях до 50 %) тратится впустую — на образование конденсата, который затем просто сливается в канализацию.

Избежать появления конденсата, которое происходит из-за того, что температура испарителя ниже точки росы поступающего из помещения воздуха, можно, либо повысив температуру испарителя, либо понизив точку росы. Первый способ приводит к менее эффективному охлаждению воздуха, а потому требует увеличения его расхода. К тому же лишнюю влагу из воздуха все равно нужно удалять.

Второй способ — понижение точки росы воздуха в помещении — можно реализовать несколькими путями, и один из них — предварительно осушить подаваемый в кондиционер воздух.

Солнечные кондиционеры с влагопоглотителями (десикантами) относятся к активным солнечным кондиционерам и имеют повышенную энергоэффективность за счет невыпадения конденсата. Влага удаляется из потока воздуха влагопоглотителями перед испарителем. Таким образом, в испаритель попадает осушенная воздушная масса с точкой росы ниже температуры испарителя, чем и обеспечивается гарантия невыпадения конденсата.

Влагопоглотитель (это может быть, например, силикагель) вращается на диске. Поглотив влагу из внутреннего воздуха, десикант диском выносится на открытое для лучей солнца пространство, где выпаривается впитанная влага. Тем самым влагопоглотитель регенерируется, и диск возвращает его к контакту с внутренним воздухом.

Дополнительно отметим, что при описанной выше схеме в солнечные дни режим осушения воздуха не требует включения парокомпрессионного холодильного цикла кондиционера, что ведет к существенному энергосбережению: электроэнергия затрачивается только на вращение диска с влагопоглотителем.

Абсорбционные солнечные кондиционеры

Другим примером активных солнечных холодильных машин являются абсорбционные чиллеры, использующие солнечное тепло. Как известно, в абсорбционных машинах рабочим веществом является раствор из двух, иногда трех компонентов. Наиболее распространены бинарные растворы из поглотителя (абсорбента) и хладагента, отвечающие двум главным требованиям: высокая растворимость хладагента в абсорбенте и значительно более высокая температура кипения абсорбента по сравнению с хладагентом.

Читайте также:  Образное название японии страна восходящего солнца

Для получения холода в абсорбционных холодильных машинах требуется тепловая энергия (как правило, используется бросовое тепло предприятий), которая подводится к генератору, где из рабочего вещества выкипает практически чистый хладагент, ведь его температура кипения гораздо ниже, чем у абсорбента.

Несмотря на то что абсорбционные чиллеры — весьма перспективная область развития холодильной техники, их применение ограничивается, как правило, промышленными объектами, так как только там есть достаточное количество бросового тепла.

В то же время в абсорбционных солнечных кондиционерах тепловую энергию, подводимую к генератору, получают от Cолнца. Это позволяет расширить область применения абсорбционных машин и использовать их не только в промышленном секторе. Учитывая, что тепловая энергия, получаемая от Cолнца, бесплатна, экономичность подобных решений в эксплуатации очевидна.

Фотоэлектрический солнечный кондиционер

В принцип работы фотоэлектрических солнечных кондиционеров заложено, пожалуй, наиболее очевидное использование солнечной энергии: питание кондиционера от солнечной батареи.

Действительно, о солнечных электростанциях, использующих возобновляемый источник энергии — энергию Cолнца, известно достаточно давно, и сказано о них очень многое. Ряд проектов уже воплощен в жизнь и успешно эксплуатируется в различных странах.

В более скромных масштабах солнечные батареи используются для энергоснабжения небольших объектов, например, коттеджей: от установленных, как правило, на кровле фотоэлектрических панелей получают электричество, расходуемое на бытовые нужды.

Кондиционер для грузовика, работающий на солнечной энергии

Еще реже от солнечных батарей предлагается запитывать различное оборудование. Если учесть, что в отличие от другой бытовой техники кондиционеры используются именно в солнечные дни, то было бы логично подключить к солнечной батарее именно кондиционер.

Подобные решения уже предлагаются многими зарубежными производителями оборудования для кондиционирования воздуха, например, Sanyo, Mitsubishi, LG. Однако очевидно, что кондиционер, будучи энергоемким оборудованием, потребует размещения достаточно большого количества фотоэлектрических панелей. Поэтому разные производители используют солнечные батареи по-разному: для запитывания только вентиляторов, для частичного электроснабжения кондиционера или для его полного обеспечения электроэнергией.

В любом случае к кондиционеру подводится силовой кабель от электросети, однако приоритет по источнику энергии отдается солнечным батареям. Например, для питания солнечных кондиционеров компаний GREE и MIDEA используется постоянный ток. В обычном режиме ток поступает от фотоэлектрических панелей, а при отсутствии солнца — через выпрямитель из электросети здания.

Однако отметим, что КПД современных фотоэлектрических панелей не превышает 25 %, что нельзя назвать эффективным преобразованием энергии. Даже несмотря на разработку комбинированных батарей на основе кристаллического кремния, КПД которых достигает 43 %, по-прежнему более половины энергии теряется в процессе ее конвертации. Именно поэтому считается, что фотоэлектрические солнечные кондиционеры уступают в эффективности, например, абсорбционным.

Экологичность как двигатель солнечного кондиционирования

Сегодня большое внимание уделяется экологичности тех или иных решений. Особо остро экологический вопрос стоит в области кондиционирования.

Пока солнечные климатические системы еще мало распространены. Однако направленность мировых усилий на снижение выбросов углекислого газа в атмосферу и рост цен на традиционные энергоносители могут стать хорошим стимулом для развития солнечной климатической техники.

Очевидно, что энергопотребление системы кондиционирования при параллельном использовании солнечной энергии снизится. Кроме того, использование тепловой энергии Cолнца может расширить область применения абсорбционных холодильных машин, работающих на безопасных рабочих жидкостях — воде или соляных растворах.

Юрий Хомутский, технический редактор журнала «МИР КЛИМАТА»

Источник

Adblock
detector