Основные этапы и стадии эволюции Вселенной (от Большого взрыва до сегодняшнего дня).
Происхождение Вселенной — любое описание или объяснение начальных процессов возникновения существующей Вселенной, включая образование астрономических объектов (космогонию), возникновение жизни, планеты Земля и человечества. Существует множество точек зрения на вопрос происхождения Вселенной, начиная с научной теории, множества отдельных гипотез, и заканчивая философскими размышлениями, религиозными убеждениями, и элементами фольклора.
В рамках общепризнанной ныне теории Большого взрыва специалисты выделяют четыре основных этапа эволюции Вселенной:
• Адронная эра: при очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц, прежде всего из адронов. Этот этап длился одну десятитысячную долю секунды, но именно тогда взаимодействие между частицами (ядерная сила) было наиболее интенсивным;
• Лептонная эра: в это время температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино, именно тогда и образовалось так называемое нейтринное море, благодаря которому и началось реликтовое излучение;
• Фотонная эра; собственно с окончанием фотонной эры, когда температура Вселенной снизилась до определённого значения, а вещество было отделено от антивещества, и заканчивается широкая фаза Большого взрыва. В сумме адронная, лептонная и фотонная эры составляют примерно одну тридцатитысячную часть возраста Вселенной;
• Звёздная эра: основной этап существования Вселенной, который продолжается и в настоящее время. На этом этапе Вселенная расширяется, вещество образовывает звёзды, планеты, звёздные системы, галактики и так далее, вплоть до появления жизни и разумных её форм.
Гипотезу «Большого Взрыва» называют также моделью горячей Вселенной, или стандартной моделью. Эта гипотеза стала общепринятой после открытия в 1965 г. реликтового излучения.
Несмотря на стандартность и общепринятость, концепция «Большого Взрыва» не дает ответа на некоторые вопросы. Например, каковы причины образования галактик из ионизированного газа? Почему наблюдается асимметрия вещества и антивещества?
Самой большой проблемой остается состояние сингулярности, введение которого требуется уравнениями общей теории относительности А. Эйнштейна.
Космологическая сингулярность — состояние Вселенной в начальный момент Большого Взрыва, характеризующееся бесконечной плотностью и температурой вещества. Космологическая сингулярность является одним из примеров гравитационных сингулярностей, предсказываемых общей теорией относительности (ОТО) и некоторыми другими теориями гравитации.
Немного другая трактовка:
• Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, это планковское время (10 −43 с после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий. По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10 −11 с после Большого взрыва.[⇨]
• Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10 −2 с после Большого взрыва. В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.
• Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, Галактики, Солнечная система.
Важной вехой в истории развития Вселенной в эту эпоху считается эра рекомбинации, когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям это произошло через 380 тыс. лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона, что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.
Источник
Этапы эволюции вселенной — научный подход
вкл. 14 Июнь 2018 . Опубликовано в Наука и эзотерика
Процесс эволюции Вселенной происходит очень медленно.
Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.
Момент, с которого Вселенная начала расширятся, принято считать ее началом. Тогда началась первая и полная драматизма эра в истории вселенной, ее называют “большим взрывом”.
Эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.
Адронная эра. Первая эра называется адронной по имени тяжелых частиц. Состав Вселенной в начале этой эры очень сложный и представлен частицами столь высоких энергий, что экспериментально они еще не обнаружены. Характерной особенностью адронной эры является сосуществование частиц и античастиц, т.е. вещества и антивещества.
Частицы и античастицы аннигилируют и возникают вновь, распадаются и рождаются в результате взаимодействий. Аннигиляция пары «частица-античастица» означает превращение их в излучение.Это свет, рентгеновские или гамма-лучи. При громадных энергиях, процессах аннигиляции и рождения частиц, материю в адронную эру можно охарактеризовать как некую адронную плазму, представляющую бесформенную, довольно однородную смесь частиц, античастиц и излучения.
Лептонная эра. Когда энергия частиц и фотонов понизилась в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.
Лептонная эра начинается с распада адронов в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010 K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.
Фотонная эра или эра излучения. Во время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко — альфа-частицы. В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее.
Хотя скорость их осталась прежней, в течение эры излучения гамма-фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что к каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.
Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Кончается эра излучения и вместе с этим период “большого взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет.
“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. В столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).
Звездная эра. После “большого взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “большого взрыва” до наших дней. По сравнению с периодом “большого взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.
Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет.
Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик.
Итак, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной.
Источник
2. Конечные этапы эволюции Вселенной
Соотношение между плотностью вещества â и критической плотностью ê определяет судьбу Вселенной. Если âê, то Вселенная будет расширяться все время, е¸ объем будет возрастать неограниченно. Такую Вселенную называют открытой. Если â>ê, то гравитационное притяжение будет замедлять расширение и оно, в конце концов, прекратится, сменившись постепенно ускоряющимся сжатием. Размеры Вселенной в этом случае будут конечными. Такую Вселенную называют закрытой (рис. 15.3).
Мы еще не знаем, какова Вселенная, открытая или закрытая. Критическая плотность ê10 -29 ã/ñì 3 , а средняя плотность вещества Вселенной (включая скрытую материю) â10 -30 -10 -29 ã/ñì 3 . Более точный учет скрытой материи может привести к соотношению â>ê. Такой (небарионной) ненаблюдаемой материей могут быть, например, нейтрино или неизвестные слабо взаимодействующие массивные частицы, предсказываемые суперсимметричными версиями Стандартной Модели. Другими (барионными) видами такой трудно наблюдаемой материи могут быть большие планеты (типа Юпитера) или очень маленькие звезды, массы которых недостаточны для ядерных реакций синтеза (они слабо светятся за счет освобождающейся гравитационной энергии), или маленькие черные дыры, оставшиеся от эпохи горячей Вселенной.
Реальная плотность вещества Вселенной â определяет геометрию пространства — е¸ кривизну C (или радиус кривизны L=). Общая теория относительности дает для радиуса кривизны следующую формулу
, (15.3)
где c — скорость света, а H — постоянная Хаббла. Если â=ê, то L=, а C=0. Пространство в этом случае плоское, а геометрия такого пространства Евклидова. Если â>ê, кривизна пространства положительна и радиус кривизны L конечен. При â o ).
Пусть теперь двумерной поверхностью будет сфера (рис. 15.4а). Геодезическими (кратчайшими) линиями на сфере являются дуги больших кругов (меридианов). Очевидно, сумма углов треугольника, образованного на сфере тремя такими дугами, будет больше (следствие выпуклости сферы). На седлообразной (вогнутой) поверхности (рис. 15.4б) сумма углов треугольника будет меньше . Чисто геометрически кривизну в данной точке поверхности определяют следующим образом
, (15.4)
где ™™™ — сумма углов треугольника, а S — его площадь (S0). При этом радиус кривизны . Сферическая (выпуклая) поверхность имеет положительную кривизну, седлообразная (вогнутая) — отрицательную, а плоская — нулевую.
Если наш мир и неевклидов, то в среднем чрезвычайно мало от него отличается. Пусть, например, его плотность â=2ê, тогда из (15.3) имеем L 310 9 парсек 10 23 км. Очевидно “почувствовать” столь ничтожную искривленность Вселенной в целом невозможно (локальная искривленность вблизи, например, черной дыры может быть большой).
Если Вселенная положительно искривлена, т.е. является закрытой, то е¸ ждет остановка расширения и сжатие в точку (рис.15.3). Что последует за этим? Может быть новый Большой Взрыв. Таким образом, закрытая Вселенная возможно является циклической (или пульсирующей) — рис. 15.5.
Даже если наша Вселенная — закрытая, то (учитывая, что никаких признаков быстрого замедления нет) до начала е¸ сжатия по меньшей мере десятки миллиардов лет.
Рассмотрим, что произойдет со Вселенной, если она открыта. Сначала погаснут звезды. Так Солнце через 5 млрд лет превратится в белый карлик. Ещ¸ раньше погаснут более массивные звезды, превратившись в нейтронные звезды и черные дыры. Звезды менее массивные, чем Солнце, проживут дольше. Процесс образования новых звезд происходит и в наше время. Однако наступит эпоха, когда новые звезды не будут рождаться. Запасы ядерной материи, из которой может возникнуть звезда, будут исчерпаны. Звездный этап Вселенной завершится через 10 14 ëåò.
Через 10 18 -10 19 лет прекратят сво¸ существование галактики. Около 90% звездной материи галактик будет рассеяно в межгалактическом пространстве, а около 10% будет затянуто в черные дыры. Последние также будут сливаться и, в конце концов, на месте каждой галактики останется одна сверхмассивная черная дыра.
Рассеянная в пространстве ядерная материя исчезнет за счет распада внутриядерных нуклонов, вызванного переносчиками сил Великого объединения — бозонами X и Y (Лекция 13). Этот процесс закончится через 10 33 -10 35 лет. Продуктами распада нуклонов являются электроны, позитроны, фотоны и нейтрино. Из-за крайней разреженности вещества к этому моменту электроны и позитроны не будут аннигилировать.
В конце концов из “тяжелых” объектов во Вселенной останутся только сверхмассивные галактические черные дыры. Они будут сливаться, образуя ещ¸ более массивные супергалактические черные дыры. И, наконец, сами эти черные дыры будут испаряться. Этот процесс крайне медленный и завершится через 10 100 лет. При этом во Вселенной останется, главным образом, сильно разреженный газ электронов, позитронов, фотонов и нейтрино.
Источник