Корона Солнца
Корона Солнца — внешняя часть атмосферы нашего светила. Она и самая протяжённая. Её можно с успехом наблюдать во время немногочисленных полных затмений. Тогда наш Луна закрывает собой весь солнечный диск и корона в виде яркого ореола становится видна для обозрения. Вся атмосфера звезды очень неоднородна, это касается и короны. В структуре короны встречаются дыры, протуберанцы и петли. Их размеры, конфигурация и структура постоянно меняется на протяжении циклов активности Солнца. Ниже расположена схема строения Солнца со слоями.
Графическое представление слоев Солнца
Линии излучения короны Солнца
Ранние исследования учёных и астрономов-любителей солнечного спектра выявили множество различных линий и излучений, которые трудно было с чем-то сопоставить. Известные химические элементы не давали таких линий при спектральном анализе. Некоторыми было высказано мнение о существовании неизвестных земной науке веществ, присутствующих в составе звезды. Вещество получило своё название – короний.
Элемент пытались открыть, пока не обратили внимание на температуру солнечной короны. Её значение превысило 1 миллион градусов по Цельсию. Такая температура вызывает полную ионизацию находящихся в составе атмосферы веществ: водорода и гелия. Они теряют свои электроны и не могут излучать в привычном спектре. Поэтому на фоне ионизации видимая часть излучения становится характерна для редких элементов, непривычных для основного состава звезды. Начинают выделяться линии ионизированного железа и кальция. Соединение их спектров и дало неизвестный короний, доводивший до исступления учёных.
Корону Солнца удобно наблюдать при солнечном затмении
Сейчас же для наблюдения за короной Солнца не нужно долго ждать следующего полного затмения. Существуют новые инструменты для исследования короны (коронографы), которые в любой момент закрывают солнечный диск специальными заслонками и дают возможность изучать атмосферу нашего светила. Кроме того, на нашем сайте можно найти множество фото солнечной короны в различных фильтрах.
Корона Солнца в рентгеновском излучении
Исследования короны Солнца с земли в видимом диапазоне являются сегодня исключением. Всё изучение учёными перешло в рентгеновский диапазон, невидимый с поверхности Земли. Это вызвано очень высокой температурой на поверхности звезды. Кроме того, фотосфера и хромосфера Солнца не производят почти рентгеновских лучей и не мешают своими излучениями учёным для наблюдения и изучения короны.
Именно так выглядит корона Солнца в рентгеновском излучении
Оптика для исследования и фотографирования рентгеновского спектра значительно отличается от обычной. У вас не получится наблюдать за звездной короной, даже если купите самый дорогой телескоп. Дело в том, что пригодный для изучения короны инструмент должен находиться за пределами нашей земной атмосферы — на борту спутника или геофизической ракеты. В конце прошлого века очень много полезной информации дал японский спутник Yohkoh. Его исследование короны проходило с 1991 по 2001 год. В нашем веке занимались изучением короны в рентгеновском спектре спутники: Коронас-Ф, Сохо и Трейс. Российский Коронас-Фотон выведен на земную орбиту в 2008 году. На его борту имеется комплекс оборудования с телескопом Тесис для получения фотографий высокого разрешения. Они помогут разрешить много загадок и дать ответы на природу нашего светила и его короны. Учёные-физики получили отличный инструмент для исследования ближайшей звезды и космоса.
Источник
Корона солнечная
Солнечная корона — внешние слои атмосферы Солнца, которые начинаются над хромосферой. Границы короны Солнца до сих пор не установлены, на сегодняшний день ясно, что она продолжается, по крайней мере, до границ Солнечной системы. Земля, так же как и другие планеты, находятся внутри короны. При наблюдениях из космоса корона прослеживается на десятки градусов от Солнца и сливается с явлением зодиакального света.
Интегральный блеск короны составляет от 0,8×10 -6 до 1,3×10 -6 часть блеска Солнца. Поэтому она не видна вне затмений или без технологических ухищрений. Для наблюдения Солнечной короны вне затмений используют внезатменный коронограф.
Спектр солнечной короны состоит из трех различных составляющий, названных L, K и F компонентами. K-составляющая — непрерывный спектр короны. На его фоне до высоты 9’÷10′ от видимого края Солнца видна эмиссионная L-компонента. Начиная с высоты около 3′ и выше виден фраунгоферов спектр, такой же как и спектр фотосферы. Он составляет F-компоненту солнечной короны. На высоте 20′ F-компонента доминирует в спектре короны. Высота 9’÷10′ принимается за границу, отделяющую внутреннюю корону от внешней.
При длительных наблюдениях с внезатменным коронографом L-короны было установлено, что переменность изофот происходит примерно за четыре недели, что указывает на то, что корона в целом вращается так же как и всё Солнце.
K-составляющая короны появляется при томсоновском расеянии солнечного излучения на свободных электронах. В непрерывном спектре были обнаружены чрезвычайно сильно размытые (до 100Å) линии H и K Ca II, что указывает на чрезвычайно большую тепловую скорость излучающих частиц (до 7500 км/с). Электроны приобретают такие скорости при температуре порядка 1,5 млн. К. В пользу того, что K-спектр принадлежит электронам, свидетельствует тот факт, что излучение внутренней короны сильно поляризовано, что и предсказывается теорией для томсоновского рассеяния.
Механизм нагрева короны, по видимому, тот же, что и для хромосферы. Поднимающиеся из глубины Солнца конвективные ячейки, проявляющиеся в фотосфере в виде грануляции, приводят к локальному нарушению равновесия в газе, которое приводит к распространению акустических волн, движущихся в различных направлениях. При этом хаотическое изменение плотности, температуры и скорости вещества, в котором распространяются эти волны, приводит к тому, что меняется скорость, частота и амплитуда акустических волн, причем изменения могут быть столь высокими, что движение газа становится сверхзвуковым. Возникают ударные волны, диссипация которых и приводит к нагреву газа.
Наблюдение эмиссионных линий L-короны также подтверждает предположение о высокой температуре в ней. Этот спектр долго оставался загадкой для астрономов, поскольку имеющиеся в нем сильные линии не воспроизводились в лабораторных опытах ни с одним из известных веществ. Долгое время этот эмиссионный спектр приписывался веществу коронию, а сами линии и по сей день называют корональными. Корональный спектр был полностью дешифрован шведским физиком Эдленом, который показал, что эти линии принадлежат многократно ионизированным атомам металлов (Fe X, Fe XI, Fe XIII, Ca XV, Ni XIII, Ni XV, Ni XVI и др.). Причем, все эти линии являются запрещенными и для их излучения необходимы экстремально низкие плотности вещества, недостижимые в земных лабораториях. Для излучения большинства линий необходима температура около 2,5 млн. град. Особого внимания требует линия 5694,42Å Ca XV требующая температуры 6,3 млн. градусов. Линия эта сильно переменная и вероятно проявляется только в местах короны, связанных с активными областями.
F-спектр короны формируется благодаря рассеянию солнечного излучения на частичках межпланетной пыли. В непосредственной близости к Солнцу пыль существовать не может, поэтому F-корона начинает проявлять себя на некотором отдалении от солнца.
Солнечная корона является источником сильного радиоизлучения. То, что Солнце излучает радиоволны стало известно в 1942-1943 гг., но то, что источником является корона стало известно пять лет спустя во время солнечного затмения. В радиодиапазоне солнечное затмение началось гораздо раньше и закончилось гораздо позже, чем в видимом. При этом во время полной фазы затмения радиоизлучение не сводилось к нулю. Солнечное радиоизлучение состоит из двух компонент: постоянной и спорадической. Постоянный компонент формируется свободно-свободными переходами электронов в электрическом поле ионов. Спорадический компонент связан с активными образованиями на Солнце.
Основные структура, наблюдаемая в короне — корональные арки, лучи, перья, опахала и др. Корональные арки представляют из себя петлю или систему петель магнитного поля с плазмой повышенной плотности.
Во время затмений при наблюдениях в белом свете корона видна как лучистая структура, форма и структура которой зависит от фазы солнечного цикла. В эпоху максимума солнечных пятен она имеет сравнительно округлую форму. Прямые и направленные вдоль радиуса Солнца лучи короны наблюдаются как у солнечного экватора, так и в полярных областях. Когда же пятен мало, корональные лучи образуются лишь в экваториальных и средних широтах. Форма короны становится вытянутой. У полюсов появляются характерные короткие лучи, так называемые полярные щёточки. При этом общая яркость короны уменьшается.
Изменения солнечной короны в солнечном цикле обнаружил в 1897 году пулковский астроном Алексей Павлович Ганский.
Источник
Солнечная корона: описание, особенности, яркость и интересные факты
Солнце — это огромная сфера раскаленных газов, которые вырабатывают колоссальную энергию и свет и делают жизнь на Земле возможной.
Этот небесный объект является самым крупным и массивным в Солнечной системе. От Земли до него расстояние составляет от 150 миллионов километров. Чтобы добраться до нас теплу и солнечному свету требуется около восьми минут. Это расстояние также именуют восемь световых минут.
Звезда, согревающая нашу землю, состоит из нескольких внешних слоев, таких как фотосфера, хромосфера и солнечная корона. Внешние слои атмосферы Солнца создают энергию на поверхности, которая пузырится и вырывается из внутренностей звезды, и определяется как солнечный свет.
Составляющие внешенего слоя Солнца
Слой, который мы видим, называется фотосферой или сферой света. Фотосфера отмечена яркими, кипящими гранулами плазмы и более темными, холодными солнечными пятнами, которые возникают, когда солнечные магнитные поля прорываются через поверхность. Пятна появляются и перемещаются по диску Солнца. Наблюдая это движение, астрономы заключили, что наше светило оборачивается вокруг своей оси. Так как Солнце не имеет твердой основы, различные области вращаются с разной скоростью. Области экватора проходят полный круг примерно за 24 дня, в то время как вращение полярных может занять более 30 дней (чтобы сделать оборот).
Что такое фотосфера?
Фотосфера также является источником солнечных вспышек: языки пламени, которые простираются сотни тысяч миль над поверхностью Солнца. Солнечные вспышки производят всплески рентгеновского, ультрафиолетового, электромагнитного излучения и радиоволн. Источником рентгеновского и радиоизлучения является непосредственно солнечная корона.
Что такое хромосфера?
Зону, окружающую фотосферу, которая является внешней оболочкой Солнца, называют хромосферой. Узкая область отделяет корону от хромосферы. Температура поднимается резко в переходной области, от нескольких тысяч градусов в хромосфере до более чем миллиона градусов в короне. Хромосфера излучает красноватое свечение, как от сгорания перегретого водорода. Но красный обод можно увидеть только во время затмения. В другое время свет от хромосферы, как правило, слишком слабый, чтобы увидеть его на фоне яркой фотосферы. Плотность плазмы падает быстро, через область перехода движется вверх от хромосферы к короне.
Что такое солнечная корона? Описание
Астрономы неустанно проводят исследования загадки, которую таит в себе солнечная корона. Что она из себя представляет?
Это атмосфера Солнца или его внешний слой. Такое название дали потому, что его внешний вид становится очевидным, когда происходит полное солнечное затмение. Частицы от короны простираются далеко в космос и, по сути, достигают орбиты Земли. Форма в основном определяется магнитным полем. Свободные электроны в коронном движении вдоль силовых линий магнитных полей образуют множество различных структур. Формы, которые наблюдаются в короне над солнечными пятнами, часто имеют подковообразные очертания, что еще раз подтверждает, что они следуют по линиям магнитного поля. С вершины таких «арок» длинные растяжки могут распространяться, на расстоянии диаметра Солнца или даже больше, как будто какой-то процесс вытягивает материал от верхушки арок в пространство. В этом задействован солнечный ветер, который попадает наружу через нашу солнечную систему. Астрономы назвали такие явления «шлем серпантин» из-за их сходства с зубчатыми шлемами, которые носили рыцари и использовали некоторые немецкие солдаты до 1918 г.
Из чего состоит корона?
Материал, из которого образуется солнечная корона, является чрезвычайно горячим, состоящим из разреженной плазмы. Температура внутри короны более миллиона градусов, на удивление, гораздо выше, чем температура на поверхности Солнца, которая составляет около 5500 °C. Давление и плотность короны, намного ниже, чем в атмосфере Земли.
Наблюдая видимый спектр солнечной короны, были обнаружены яркие эмиссионные линии на длинах волн, которые не соответствуют известным материалам. В связи с этим, астрономы предположили существование «корония» в качестве основного газа в короне. Истинная природа этого явления оставалась тайной, пока не обнаружили, что корональные газы перегреты выше 1.000.000 °C. При наличии такой высокой температуры два доминирующих элемента — водород и гелий — абсолютно лишены своих электронов. Даже незначительные вещества, такие как углерод, азот и кислород разделись до голых ядер. Только более тяжелые составляющие (железо и кальций) способны сохранить некоторые из своих электронов под воздействием таких температур. Излучение из этих высокоионизованных элементов, которые образуют спектральные линии, до недавних времен оставались загадочными для ранних астрономов.
Яркость и интересные факты
Солнечная поверхность слишком яркая и, как правило, нашему зрению недоступна ее солнечная атмосфера, корона Солнца тоже не видна невооруженным глазом. Внешний слой атмосферы очень тонкий и слабый, поэтому его можно увидеть только с Земли в то время когда происходит солнечное затмение или при помощи специального телескопа-коронографа, который имитирует затмение, покрывая яркий солнечный диск. Некоторые коронографы используют наземные телескопы, другие проводятся на спутниках.
Яркость солнечной короны в рентгеновских лучах происходит из-за его огромной температуры. С другой стороны, солнечная фотосфера излучает очень мало рентгеновских лучей. Это позволяет просматривать корону по диску Солнца, когда мы наблюдаем его в рентгеновских лучах. Для этого используется специальная оптика, которая позволяет видеть рентгеновские лучи. В начале 70-х годов первая космическая станция США Скайлэб использовала рентгеновский телескоп, при помощи которого были отчетливо видны солнечная корона и солнечные пятна или дыры впервые. В течение последнего десятилетия было предоставлено огромное количество информации и изображений на короне Солнца. При помощи спутников солнечная корона становится более доступной для проведения новых и интересных наблюдений Солнца, его особенностей и динамичного характера.
Температура Солнца
Хотя внутренняя структура солнечного ядра скрыта от прямых наблюдений, можно сделать вывод, с использованием различных моделей, что максимальная температура внутри нашей звезды составляет около 16 миллионов градусов (по Цельсию). Фотосфера — видимая поверхность Солнца — имеет температуру около 6000 градусов по Цельсию, однако она увеличивается очень резко от 6000 градусов до нескольких миллионов градусов в короне, в районе 500 километров над фотосферой.
Солнце горячее на внутренней стороне, чем на внешней стороне. Тем не менее, наружная атмосфера Солнца, короны, действительно горячее, чем фотосферы.
В конце тридцатых годов Гротриан (1939) и Эдлен обнаружили, что странные спектральные линии, наблюдаемые в спектре солнечной короны, излучаются элементами, такими как железо (Fe), кальций (Са) и никель (Ni) в очень высоких стадиях ионизации. Они пришли к выводу, что корональный газ сильно нагревается с температурой более 1 миллиона градусов.
Вопрос о том, почему солнечная корона настолько горяча, остается одной из самых захватывающих головоломок астрономии за последние 60 лет. Однозначного ответа на этот вопрос пока нет.
Хотя солнечная корона несоизмеримо горяча, она также имеет очень низкую плотность. Таким образом, лишь небольшая часть от общего солнечного излучения требуется для подпитки короны. Суммарная мощность, излучаемая в рентгеновских лучах, составляет лишь около одной миллионной полной светимости Солнца. Важный вопрос заключается в том, как транспортируется энергия до короны и какой механизм отвечает за транспорт.
Механизмы питания солнечной короны
На протяжении многих лет было предложено несколько различных механизмов питания короны:
Быстрые и медленные магнито-акустические волны тел.
Альфвеновские тела волны.
Медленная и быстрая магнито-акустические поверхностные волны.
Ток (или магнитное поле) — рассеивание.
Потоки частиц и магнитного потока.
Эти механизмы были проверены как теоретически, так и экспериментально и на сегодняшний день только акустические волны были исключены.
Пока что еще не изучено, где заканчивается верхняя граница короны. Земля и другие планеты Солнечной системы располагаются внутри короны. Оптическое излучение короны наблюдается на 10—20 радиусов Солнца (десятки миллионов километров) и объединяется с явлением зодиакального света.
Магнитный ковер Солнечной короны
В последнее время «магнитный ковер» был связан с головоломкой коронального отопления.
Наблюдения с высоким пространственным разрешением показывают, что поверхность Солнца покрыта слабыми магнитными полями, сосредоточенными на небольших участках противоположной полярности (магнит ковра). Эти магнитные концентрации, как полагают, являются основными точками отдельных магнитных трубок, несущих электрический ток.
Недавние наблюдения этого «магнитного ковра» показывают интересную динамику: фотосферные магнитные поля постоянно перемещаются, взаимодействуют друг с другом, рассеиваются и выходят на очень короткий период времени. Магнитное пересоединение между магнитным полем противоположной полярности может изменить топологию поля и выпустить магнитную энергию. Процесс переподключения также приведет к рассеиванию электрических токов, которые преобразуют электрическую энергию в тепло.
Это общее представление о том, как магнитный ковер может быть вовлечен в корональный нагрев. Однако утверждать, что «магнитный ковер» в конечном счете решает проблему нагрева короны нельзя, так как количественная модель процесса еще не предложена.
Может ли Солнце погаснуть?
Солнечная система настолько сложна и неизведанна, что сенсационные заявления, такие как: «Солнце скоро погаснет» или, наоборот, «Температура Солнца повышается и скоро жизнь на Земле станет невозможной» звучат по меньшей мере нелепо. Кто может делать такие прогнозы, в точности не зная, какие механизмы заложены в основу этой таинственной звезды?!
Источник