Космически луче солнце лучей
Осн. долю С.к.л. составляют протоны с EK > 10 6 эВ, имеются также ядра с зарядом (вплоть до ядер 28 Ni) и энергией EK от 0,1 до 100 МэВ/нуклон, электроны с
кэВ (экспериментальный предел). Зарегистрированы заметные потоки дейтронов 2 H, установлено наличие трития 3 H и осн. изотопов C, O, Ne и Ar. В нек-рых вспышках генерируется значит. количество ядер изотопа 3 He. Относительное содержание ядер с
в основном отражает состав солнечной атмосферы, тогда как доля протонов меняется от вспышки к вспышке.
| Рис. 1. Временной профиль потока солнечных космических лучей от вспышки 22 ноября 1977 г. по наблюдениям на станции Апатиты. Возрастание потока космических лучей имело амплитуду было кратковременным и отличалось сильной анизотропией потока солнечных протонов у Земли. |
Комплекс явлений (процессов), предшествующих моменту t0 генерации С.к.л., а также процессов, происходящих вблизи момента t0 (сопутствующие эффекты) и сопровождающих генерацию С.к.л. (с запаздыванием T относительно момента t0 или , где
— длительность ускорения), наз. солнечным протопным событием (СПС). Для частиц с энергией EK > 10 8 эВ временная зависимость интенсивности потока С.к.л. у Земли (временной профиль СПС) имеет характерный вид несимметричной кривой с очень быстрым (минуты — десятки минут) нарастанием и более медленным (от неск. часов до
сут) спадом (рис. 1). При этом амплитуда возрастания на поверхности Земли может достигать сотен и тысяч % по отношению к фоновому потоку глактич. космич. лучей. Самое мощное СПС за всю историю их наблюдений (с 1942 г.) зарегистрировано 23 февраля 1956 г. (>4500%). Менее интенсивные СПС с увеличением потока С.к.л. на >1% наблюдаются чаще. С февраля 1942 г. по февраль 1984 г. на поверхности Земли было зафиксировано 34 подобных случая (рис. 20. По мере удаления от поверхности Земли (в стратосфере, на орбитах ИСЗ и в межпланетном пространстве) энергетич. порог регистрации С.к.л. постепенно снижается , а частота наблюдаемых протонных событий значительно увеличивается. При этом временной профиль СПС, как правило, растягивается на несколько десятков часов.
Распределение С.к.л. по энергиям и зарядам у Земли определяется механизмом ускорения частиц в источнике (солнечная вспышка), особенностями их выхода из области ускорения и условиями распространения в межпланетной среде. Форма спектра С.к.л. в источнике во всем диапазоне их энергий пока надежно не установлена. По-видимому, она неодинакова в различных интервалах энергии: при описании дифференциального энергетич. спектра степенной ф-цией показатель
по мере уменьшения энергии уменьшается (спектр становится более пологим). В межпланетных магн. поляхспектр заметно трансформируется со временем (значение
увеличивается), но остается круто падающим, т.е. число частиц быстро уменьшается с ростом энергии. Показатель спектра в истонике может менятся от события к событию в пределах
в зависимости от мощности СПС и рассматриваемого интервала энергий, а у Земли — соответственно в пределах
.
|
Рис. 2. Вариации частоты солнечных протонных событий, наблюдаемых на поверхности Земли, в зависимости от уровня солнечной активности, выраженной в числах Вольфа W (W — среднегодовое число солнечных пятен). Большинство протонных событий, зарегистрированных в 1942-84 гг. на поверхности Земли, произошли в периоды роста или спада активности в 11-летнем солнечном цикле. |
Полное число ускоренных протонов, вышедших в межпланетное пространство во время мощного СПС, может превышать 10 32 , а их суммарная энергия >10 31 эрг, что сравнимо с энергией эл.-магн. излучения вспышки. Высота, на к-рой происходит ускорение частиц в атмосфере Солнца, по-видимому, неодинакова для разных вспышек: в одних случаях область ускорения (источник) находится в короне, при концентрации частиц плазмы n
10 11 см -3 , в других — в хромосфере, где n
10 13 см -3 . На выход С.к.л. за пределы солнечной атмосферы существенно влияет конфигурация магн. полей в короне.
Ускорение частиц тесно связано с механизмом возникновения и развития самих солнечных вспышек. Осн. источником энергии вспышки явл. магн. поле. При его изменениях возникают электрич. поля, к-рые и ускоряют заряженные частицы. Наиболее вероятными механизмами ускорения частиц во вспышках принято считать электромагнитные. Частицы космич. лучей с зарядом Ze, массой Amp и скоростью v в эл.-магн. полях принято характеризовать магн. жесткостью R=Amp cv/Ze, где A — атомный номер элемента. При ускорении квазирегулярным электрическим полем, возникающем при разрыве нейтрального токового слоя во вспышке, в процесс ускорения вовлекаются все частицы горячей плазмы из области разрыва. При этом формируется спектр С.к.л. вида
exp(-R/R0), где R0 — характеристич. жесткость. Если магн. поле в области вспышки меняется регулярным образом (напр., растет со временем по определенному закону), то возможен эффект бетатронного ускорения. Такой механизм приводит к степенному спектру по жесткостям (). В сильно турбулизированной плазме солнечной атмосферы (см. Плазменная турбулентность ) возникают также нерегулярно меняющиеся электрич. и магн. поля, к-рые приводят к стохастическому ускорению. Наиболее детально разработан механизм статистич. ускорения при столкновениях частиц с магн. неоднородностями (механизм Ферми). Этот механизм дает энергетич. спектр вида
.
В условиях вспышки осн. роль должны играть быстрые (регулярные) механизмы ускорения, хотя теория допускает и альтернативную возможность — медленное (стохастическое) ускорение. Из-за сложности физ. картины вспышек и недостаточности точности наблюдений сделать выбор между различными механизмами трудно. Вместе с тем наблюдения и теоретич. анализ показывают, что во вспышке может работать нек-рая комбинация механизмов ускорения. Принципиально важную информацию о процессах ускорения С.к.л. дают регистрация нейтронов и гамма-излучения вспышек, а также наблюдения эл.-магн. излучения в рентг., радио- и др. диапазонах. Данные об этих излучениях, полученные с помощью КА, свидетельствуют в пользу бытрого ускорения С.к.л. (секунды).
Покидая область ускорения, частицы С.к.л. в течение многих часов блуждают в межпланетном магн. поле, рассеиваясь на его неоднородностях, и постепенно уходят к краям Солнечной системы. Часть из них вторгается в атмосферу Земли, вызывая дополнительную ионизацию газов атмосферы (в основном в области полярных шапок). Достаточно интенсивные потоки С.к.л. могут заметно опустошать озонный слой атмосферы. Тем самым С.к.л. играют активную роль в системе солнечно-земных связей .
Мощные потоки быстрых частиц в период солнечных вспышек могут создавать серьезную опасность для экипажей, солнечных батарей и электронного оборудования КА в межпланетном пространстве. Установлено, что наибольший вклад в суммарную дозу вносят солнечные протоны с энергией эВ. Частицы меньших энергий эффективно поглощаются обшивкой КА. Относительно небольшие СПС дают макс. поток протонов с энергией
эВ не выше 10 2 -10 3 см -2 с -1 , что сравнимо с потоком протонов во внутр. радиационном поясе Земли. Макс. поток протонов с
эВ от наиболее мощного СПС 23 февраля 1956 г. составил
см -2 с -1 , а для протонов с
эВ — ок.
см -2 с -1 . Значения макс. потоков протонов во время мощных СПС растут по мере уменьшения энергии. Так, 4 августа 1972 г. поток протонов с
эВ превышал
см -2 с -1 . Мощные СПС происходят не чаще одного в неск. лет, так что космич. полеты малой длительности относительно безопасны. Для обеспечения радиац. безопасности КА проблема прогнозирования солнечнох вспышек остается оченб актуальной, но, по-видимому, еще далекой от разрешения. Более обнадеживающие результаты достигнуты в диагностике СПС, т.е. в количеств. оценке ожидаемых характеристик С.к.л. по данным об эл.-магн. излучении вспышек. Эти результаты важны, в частности, для прогноза и оценки геофиз. эффектов С.к.л.
Лит.:
Мирошниченко Л.И., Космические лучи в межпланетном пространстве, М., 1973; Григорьев Ю.Г., Радиационная безопасность комических полетов, М., 1975; Проблемы солнечной активности и космическая система «Прогноз». [Сб. ст.], М., 1977; Мирошниченко Л.И., Петров В.М., Динамика радиационных условий в космосе, М., 1985.
Источник
Космически луче солнце лучей
Космические лучи
Cosmic rays
Космические лучи (космическое излучение) — частицы, заполяющие межзвездное пространство и постоянно бомбардирующие Землю. Они были открыты в 1912 г. австрийским физиком В. Гессом с помощью ионизационной камеры на воздушном шаре. Максимальные энергии космических лучей
3 . 10 20 эВ, т.е. на несколько порядков превосходят энергии, доступные современным ускорителям на встречных пучках (максимальная эквивалентная энергия Теватрона
2 . 10 15 эВ, LHC — около 10 17 эВ). Поэтому изучение космических лучей играет важную роль не только в физике космоса, но также и в физике элементарных частиц. Ряд элементарных частиц впервые был
обнаружен именно в космических лучах (позитрон — К.Д. Андерсон, 1932 г.; мюон (μ) – К.Д. Андерсон и С. Неддермейер, 1937 г.; пион (π) — С. Ф. Пауэлл, 1947 г.). Хотя в состав космических лучей входят не только заряженные, но и нейтральные частицы (особенно много фотонов и нейтрино), космическими лучами обычно называют заряженные частицы.
Различают следующие типы космических лучей (рис. 1):
- Галактические космические лучи – космические частицы, приходящие на Землю из нашей галактики. В их состав не входят частицы, генерируемые Солнцем.
- Солнечные космические лучи – космические частицы, генерируемые Солнцем.
Рис. 1. Галактические и солнечные космические лучи. |
Кроме этих двух основных типов космических лучей рассматривают также метагалактические космические лучи — космические частицы, возникшие вне нашей галактики. Их вклад в общий поток космических лучей невелик.
Космические лучи, не искаженные взаимодействием с атмосферой Земли, называют первичными. Поток галактических космических лучей, бомбардирующих Землю, примерно изотропен и постоянен во времени и составляет
1 частица/см 2. с (до входа в земную атмосферу). Плотность энергии галактических космических лучей
1 эВ/см 3 , что сравнимо с суммарной энергией электромагнитного излучения звёзд, теплового движения межзвёздного газа и галактического магнитного поля. Таким образом, космические лучи – важный компонент Галактики.
Состав космических лучей приведен в таблице.
Характеристики первичных космических лучей (галактических и солнечных) | ||
---|---|---|
Галактические космические лучи | Во время солнечных вспышек может достигать 10 6 см -2 ·с -1 | |
Состав |
4-5% ядер гелия, 6 — 3 . 10 20 эВ | 10 5 — 10 11 эВ |
На рис.2 слева показаны энергетические спектры главных компонент первичных космических лучей. На рис 2 справа показаны вертикальные потоки главных компонент космических лучей с энергией > 1 ГэВ в атмосфере Земли. Кроме протонов и электронов все частицы возникли в результате взаимодействия первичных космических лучей с ядрами атмосферы.
Рис. 2. Состав и характеристики космических лучей. Слева — энергетические спектры главных компонент первичных космических лучей. Справа — вертикальные потоки главных компонент космических лучей с энергией > 1 ГэВ на разных глубинах атмосферы Земли
В результате взаимодействия с ядрами атмосферы первичные космические лучи (в основном протоны) создают большое число вторичных частиц – пионов, протонов, нейтронов, мюонов, электронов, позитронов и фотонов. Таким образом вместо одной первичной частицы возникает большое число вторичных частиц, которые делятся на адронную, мюонную и электронно-фотонную компоненты. Такой каскад покрывает большую территорию и называется широким атмосферным ливнем .
В одном акте взаимодействия протон обычно теряет
50% своей энергии, а в результате взаимодействия возникают в основном пионы. Каждое последующее взаимодействие первичной частицы добавляет в каскад новые адроны, которые летят примущественно по направлению первичной частицы, образуя адронный кор ливня.
Образующиеся пионы могут взаимодействовать с ядрами атмосферы, а могут распадаться, формируя мюонную и электронно-фотонную компоненты ливня. Адронная компонента до поверхности Земли практически не доходит, превращаясь в мюоны, нейтрино и γ-кванты в результате распадов.
π 0 → 2γ ,
π + (или K + ) → μ + + νμ,
π — (или K – ) → μ – + μ,
K +,–,0 → 2π,
μ + → e + + νe + μ,
μ – → e – + e + νμ.
Образующиеся при распаде нейтральных пионов -кванты рождают электрон-позитронные пары и
-кванты последующих поколений. Заряженные лептоны теряют энергию на ионизацию и радиационное торможение. Поверхности Земли в основном достигают релятивистские мюоны. Электронно-фотонная компонента поглощается сильнее.
Один протон с энергией > 10 14 эВ может создать 10 6 -10 9 вторичных частиц. На поверхности Земли адроны ливня концентрируются в области порядка нескольких метров, электронно-фотонная компонента − в области
100 м, мюонная − нескольких сотен метров.
Поток космических лучей на уровне моря (
0.01 см -2 ·с -1 ) примерно в 100 раз меньше потока первичных космических лучей.
Основными источниками первичных космических лучей являются взрывы сверхновых звезд (галактические космические лучи) и Солнце. Большие энергии
(до 10 16 эВ) галактических космических лучей объясняются ускорением частиц на ударных волнах, образующихся при взрывах сверхновых. Природа космических лучей сверхвысоких энергий пока не имеет однозначной интерпретации.
Источник