Меню

Космологическая модель фридмана вселенная нестационарная

Как устроена Вселенная. Часть I.

Невозможно представить, насколько ниже в
своем развитии оказалось бы человечество,
если бы оно никогда не видело звездного неба.
Анри Пуанкаре.

Нестационарная Вселенная Фридмана.

Идея о том, что рождение Вселенной началось с взрыва, была высказана российским ученым Александром Фридманом. В 1922 году журнал «Zeitschrift fur Physik» опубликовал статью «О кривизне пространства», автором которой оказался петербургский математик Фридман- имя это мало что говорило физикам-теоретикам Запада.

Хотя Александр Александрович Фридман к началу 20-х годов вовсе не был безвестным начинающим ученым. Просто он ранее никогда не занимался теоретической физикой, поскольку являлся крупным специалистом по теоретической метеорологии, динамике атмосферы и весьма известным математиком.

Он отличался невероятной дотошностью, умением глубоко проникать в суть изучаемого предмета, влезать в его тонкости. Не случайно, когда Фридман заинтересовался теорией относительности, его друзья заявили: «Теперь мы будем, наконец, знать теорию относительности».

Несмотря на неизвестность автора в кругу физиков-теоретиков, статья сразу же обратила на себя внимание. И не удивительно. В скромном по объему сообщении утверждалось, что кривизна нашего пространства должна изменяться, и стационарная Вселенная, которую отстаивал Эйнштейн, невозможна

Давайте вспомним. Вселенная Ньютона была бесконечной и населенной бесконечным количеством звезд. Такой подход Ньютона понятен; если бы число звезд было конечным, то, по расчетам, сила взаимного притяжения стянула бы их воедино в гигантский звездный клубок.

В модели Вселенной Ньютона есть два парадокса, необъяснимых с точки зрения его теории. Судите сами: если число звезд бесконечно, то они должны создавать яркую и равномерную освещенность неба. А этого на самом деле нет.

Кроме того, в бесконечной Вселенной само тяготение должно возрастать бесконечно, и это должно вызвать огромные скорости движения звезд. А на опыте ничего подобного не наблюдалось.

Ньютон обнаружил эти несоответствия в своей модели, но решил эту проблему достаточно просто, придя к выводу, что Бог всегда присутствует во Вселенной и исправляет эти несообразности [1].

Пытаясь понять, что представляет собой Вселенная, Эйнштейн столкнулся с теми же трудностями, которые рождает бесконечность. В своей работе «Вопросы космологии и общая теория относительности» он пишет: «Мне не удалось установить граничные условия для пространственной бесконечности… Если бы можно было рассматривать мир в его пространственной протяженности как замкнутый, то подобного рода граничные условия были бы вообще не нужны» [2].

Натолкнувшись на идею конечной Вселенной, Эйнштейн все свои силы сосредоточил на поиски доказательств правильности – или хотя бы возможности — ее существования.

Чтобы избавиться от пороков бесконечности, Эйнштейн заменил бесконечную «плоскую» ньютонову Вселенную конечной. Конечное пространство по необходимости должно быть замкнутым и искривленным, подобно тому, как обязательно искривлена любая замкнутая поверхность.

Далее Эйнштейн предположил, что средняя плотность материи во Вселенной постоянна и настолько велика, что обеспечивает положительную кривизну. Надо сказать, что только при положительной кривизне пространство замкнуто и конечно.

Исходя из факта малых звездных скоростей, Эйнштейн предположил, что Вселенная должна быть стационарной, что ее структура и кривизна не должны меняться со временем.

Однако из его теории вытекала новая проблема: под действием гравитационных сил замкнутая Вселенная должна сжиматься. Получалось, что, избавляясь от неприятностей, связанных с бесконечностью Вселенной, Эйнштейн наткнулся на неприятности, вызванные именно конечностью, замкнутостью нашего мира.

Чтобы выйти из трудного положения, и сохранить стационарность Вселенной, Эйнштейн был вынужден ввести в свои уравнения поля тяготения так называемый космологический член. Иными словами, он ввел новую «антигравитационную силу», которая удерживает звезды на расстоянии друг от друга и препятствует стягиванию Вселенной. Поддерживает стационарность Вселенной.

«Не от хорошей жизни» ввел он эту постоянную. «Для того, чтобы придти к этому свободному от противоречий представлению, мы должны были все же ввести новое расширение уравнений поля тяготения, не оправдываемое нашими действительными знаниями о тяготении» [2].

Ему была необходимо стационарность Вселенной. Поэтому он утверждал, что пространство-время само по себе всегда расширяется и этим расширением уравновешивается притяжение всей остальной материи во Вселенной, так что в результате Вселенная оказывается статической.


Вселенная.

С большим трудом, преодолевая огромные препятствия, Эйнштейн, наконец, построил модель мира, которая достаточно хорошо отражала мир реальный. Во всяком случае, в известных тогда науке границах.

И вот теперь какой-то Фридман заявляет, что Вселенная нестационарна.

А что, собственно, сделал Фридман?

Оказывается, он нашел общее решение системы уравнений тяготения, и пришел к выводу: Вселенная нестационарна, ее кривизна меняется. Решение Эйнштейна является лишь частным случаем.
Решение Фридмана открывало две возможности: монотонное в одном направлении, например, непрерывное расширения, или периодическое возрастание и уменьшение кривизны. Во втором случае Вселенная, словно сердце, должна была то расширяться, то сжиматься.

Прочитав статью Фридмана, Эйнштейн тот час же отреагировал на нее, написав ответ под названием «Замечания к работе А. Фридмана». Он писал: «Результаты относительно нестационарного мира , содержащиеся в упомянутой работе, представляются мне подозрительными».

Читайте также:  Вселенная метро 2033 лешие не умирают

Фридман устоял перед силой авторитета. Он заново произвел все вычисления, причем решил систему уравнений без всяких упрощений и дополнительных космологических членов, и попросил своего товарища, физика Краткова, ехавшего в Берлин, передать их Эйнштейну.

Спустя несколько месяцев в том же журнале появилась еще одна маленькая заметка. Вот она целиком. «К работе А. Фридмана “О кривизне пространства”. В предыдущей заметке я подверг критике названную выше работу. Однако, моя критика, как я убедился из письма Фридмана, сообщенного мне господином Крутковым, основывалась на ошибке в вычислениях. Я считаю результаты г. Фридмана правильными, и проливающими новый свет. Оказывается , что уравнения поля допускают наряду со статическими также и динамические (т.е. переменные относительно времени) центрально-симметричные решения для структуры пространства» [3].

Эйнштейн не был бы Эйнштейном, не появись этого публичного признания своей неправоты.

Но вернемся к нестационарной Вселенной Фридмана. В своих исследованиях Фридман сделал исходное предположение: Вселенная одинакова во всех направлениях и остается таковой, откуда бы мы ее ни рассматривали. Долгое время считалось, что предположение об одинаковости Вселенной является грубым приближением к реальной Вселенной. В модели Фридмана все галактики удаляются друг от друга. Это вроде бы как надутый шарик, на который нанесены точки, и если его все больше надувать, расстояние между точками увеличивается. При этом ни одну из точек нельзя назвать центром расширения.

Словом, Фридман в 1922 году доказал, что Вселенная не должна быть статической. Это произошло за несколько лет до открытия Хаббла.

В 1924 году американский астроном Эдвин Хаббл показал, что наша Галактика не является единственной. Существует много галактик, разделенных огромными областями пустого пространства. Если бы наблюдатель увидел нашу Галактику извне, то он обнаружил бы, что она имеет вид спирали и медленно вращается. Звезды в ее спиральных рукавах делают примерно один оборот вокруг ее центра каждые несколько сотен миллионов лет. Наше Солнце представляет собой обычную желтую звезду средней величины, расположенную на внутренней стороне одного из спиральных рукавов.

Продолжив свои исследования, в 1929 году Хаббл, фотографируя спектры далеких галактик, получил неопровержимые доказательства того, что Вселенная расширяется. Это открытие Хаббла явилось триумфом Фридмана, до которого Фридман не дожил, скончавшись от холеры в 1925 году в возрасте 36 лет.

Сегодня известно, что Вселенная расширяется за каждую тысячу миллионов лет на 5-10%. Все галактики удаляются от нас, причем, чем дальше находится галактика, тем быстрее она удаляется.

Открытие расширяющейся Вселенной было одним из великих интеллектуальные переворотов двадцатого века.

Лауреат Нобелевской премии физик-теоретик Стивен Хокинг пишет: «Имеющиеся данные говорят о том, что Вселенная, вероятно, будет расширяться вечно. Единственное, в чем можно быть совершенно уверенным, так это в том, что если сжатие Вселенной все-таки произойдет, то никак не раньше, чем через десять миллионов лет, ибо, по крайней мере, столько времени она уже расширяется. Но это не должно нас тревожить: к тому времени, если мы не переселимся за пределы Солнечной системы, человечества давно уже не будет — оно угаснет вместе с Солнцем» [4].

В соответствии с теорией Фридмана, которая дает удивительно точное описание нашей Вселенной, пространство-время, наполненное чрезвычайно плотной материей, появилось в результате чудовищного взрыва из точки и начало неудержимо расширяться.

1. Тихоплав В.Ю., Тихоплав Т.С. «Научно-эзотерические основы Мироздания». лекция № 11
2.Эйнштейн А. Сборник научных трудов. Т.I-IV.: Наука, 1966.
3. Ливанова А.Три судьбы постижения мира М.: Знание, 1969.
4.Хокинг С. Краткая история времени. СПб.: Амфора, 2005.

Источник

Модель расширяющейся Вселенной (Вселенная Фридмана, нестационарная Вселенная)

В 1922 году советский физик и математик А. Фридман на основе строгих расчетов показал, что Вселенная Эйнштейна не может быть стационарной, неизменной. При этом Фридман опирался на сформулированный им космологический принцип, который строится на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной: мы можем проводить наблюдения в любой из них и везде увидим изотропную Вселенную.

Фридман на основе космологического принципа доказал, что уравнения Эйнштейна имеют и другие, нестационарные решения, согласно которым Вселенная может либо расширяться, либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э. Хаббл обнаружил эффект «красного смещения» спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие эффекта Допплера — изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. «Красное смещение» было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием. Согласно последним измерениям увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек.

Читайте также:  Физика темной материи вселенной

В результате своих наблюдений Хаббл обосновал представление, что Вселенная — это мир галактик, что наша Галактика — не единственная в ней, что существует множество галактик, разделенных между собой огромными расстояниями. Вместе с тем Хаббл пришел к выводу, что межгалактические расстояния не остаются постоянными, а увеличиваются. Таким образом, в космологии появилась концепция расширяющейся Вселенной.

Разъясняя характер эволюции Вселенной, расширяющейся начиная с сингулярного состояния, Фридман особо выделял два случая:

а) радиус кривизны Вселенной с течением времени постоянно возрастает, начиная с нулевого значения;

б) радиус кривизны меняется периодически: Вселенная сжимается в точку (в ничто, сингулярное состояние), затем снова из точки, доводит свой радиус до некоторого значения, далее опять, уменьшая радиус своей кривизны, обращается в точку, и т.д.

Наблюдаемое нами разбегание галактик есть следствие расширения пространства замкнутой конечной Вселенной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстояния между пылинками на поверхности раздувающегося мыльного пузыря. Каждую из таких пылинок, как и каждую из галактик, можно с полным правом считать центром расширения. Когда Э. Хаббл показал, что далекие галактики разбегаются друг от друга со все возрастающей скоростью, был сделан однозначный вывод о том, что наша Вселенная расширяется. Но расширяющаяся Вселенная — это изменяющаяся Вселенная, мир со всей своей историей, имеющий начало и конец. Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Получается, что оно не менее 10 млрд. и не более 19 млрд. лет. Наиболее вероятным временем существования расширяющейся Вселенной считают 15 млрд. лет. Таков приблизительный возраст нашей Вселенной.

Как и любая другая научная концепция, теория Фридмана приближенна и имеет границы своей применимости. В частности, ее заведомо нельзя использовать в области очень малых пространственно-временных масштабов, где важны не учитываемые ею квантовые эффекты. Здесь космологическая модель Фридмана может приводить к парадоксальным результатам, например, к выводу о рождении Вселенной “из ничего” — из абсолютной, безразмерной точки.

Концепция «Большого взрыва»

Составной частью модели расширяющейся Вселенной является представление о Большом Взрыве, происшедшем где-то примерно 12 — 18 млрд. лет назад. Джордж Лемер был первым, кто выдвинул концепцию «Большого взрыва» из так называемого «первобытного атома» и последующего превращения его осколков в звезды и галактики. Конечно, со стороны современного астрофизического знания данная концепция представляет лишь исторический интерес, но сама идея первоначального взрывоопасного движения космической материи и ее последующего эволюционного развития неотъемлемой частью вошла в современную научную картину мира.

Читать онлайн

книги о тайнах и загадках истории, а также о необъяснимых явлениях на нашем сайте

Источник

Нестационарная космология Фридмана.

Домашняя работа

по КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

«КОСМОЛОГИЧЕСКИЕ МОДЕЛИ ВСЕЛЕННОЙ»

Вселенная Эйнштейна………………………………………. 3

Нестационарная космология Фридмана…………………………….4

Вселенная, в которой мы живем……………………………………..7

Введение.

С древних времен взоры людей были устремлены в небо. Человек в поисках ответов о вопросах мироздания, старался понять, как устроен этот мир, что такое в этом мире Солнце, звезды, планеты, как они возникли, имеет ли Вселенная свое начало, и будет ли иметь свой конец? Он пытался осознать свое место в нем.

Интересные представления о Вселенной были у древних мыслителей, однако истинно научные представления о Вселенной могли возникнуть только с созданием общей теории относительности. С момента создания ОТО ведет свой отчет современная космология — наука, изучающая свойства и эволюцию Вселенной в целом. В данной работе я попытаюсь рассмотреть, насколько стремительно открытия последних десятилетий изменили наши представления о Вселенной, насколько полна теория о Вселенной на сегодняшний день.

Вселенная Эйнштейна

До Эйнштейна никто не сомневался, что Вселенная изотропна, однородна, геометрия пространства которой евклидова. Однако в дальнейшем, анализ данной модели выявил существенные недостатки, впоследствии названные «космологическими парадоксами». Теория тяготения Ньютона подверглась пересмотру. Общая теория относительности Эйнштейна раскрыла связь между тяготением, пространством и временем. Она открыла дорогу к созданию научно обоснованных космологических моделей. Сам Эйнштейн не смог пройти мимо такой задачи, понимая всю ее значимость.

В ОТО Эйнштейн показал, что тяготение можно трактовать как проявление искривления пространства-времени под действием вещества. Поэтому наиболее естественным было отказаться от евклидовости пространства Вселенной. Эйнштейн отказался, сохранив при этом положения о стационарности и однородности Вселенной.

Читайте также:  Расширяющая вселенная краткое сообщение

Итак, Эйнштейн, поставив себя выше Бога, на основе своего уравнения тяготения, где левая часть характеризует геометрию пространства-времени, а правая вещества, предпринял попытку построить статичную, вечную и неизменную во времени модель Вселенной. Но оказалось, что его уравнения несовместимы с представлением о статичной Вселенной. Такого решения уравнений просто не существует, а, следовательно, Вселенная не может быть стационарна.

Эйнштейн, придерживаясь своих взглядов относительно наиболее общих черт Вселенной, решил, основываясь на своей интуиции, ввести в левую часть своего уравнения новое слагаемое лямбда-член Λgij. В этом случае можно получить решение, соответствующее условиям однородности и статичности Вселенной. Параметр Λ называют космологической постоянной.

Итак, Вселенная оказалась замкнутой трехмерной сферой.

Эйнштейн построил первую истинно научную космологическую модель мира. Модель стационарной неевклидовой сферической Вселенной не противоречит традиционным взглядам, и поэтому была приемлема для того времени во всех отношениях. Может ли быть модель прекраснее модели конечной, но безграничной, существующей вечно и неизменно, с одним и тем же радиусом Вселенной?

Однако нашелся человек, не побоявшийся выйти за рамки всеобщих представлений. Им оказался математик А.Фридман, который совершил переворот в космологии, создав модель эволюционирующей Вселенной.

Нестационарная космология Фридмана.

Фридмана как математика не удовлетворило полученное решение Эйнштейна, так как он получил одно из всех возможных решений системы уравнений тяготения, заранее навязав требование статичности. Фридман же решил получить все возможные решения данных уравнений. Он принял точку зрения Эйнштейна относительно наиболее общих черт пространства Вселенной или разумности космологических принципов, но отверг взгляд Эйнштейна относительно абсолютности стационарности Вселенной. По его мнению, сами уравнения должны дать ответ на этот вопрос, достаточно лишь воспользоваться космологическим принципом.

Существуют три модели Фридмана. Далее считаем, что Λ =0.

Друг от друга они отличаются тем, что в них различным образом от времени зависят радиус кривизны Вселенной и расстояния между точками в пространстве (рисунок 1)

а) б)

Качественно эти зависимости представлены на рис. 1,а соответствует модели закрытой Вселенной, характеризуемой положительной кривизной. В силу однородности Вселенной ее кривизна является величиной постоянной, не изменяющейся при переходе от одной точки пространства к другой. Следовательно, пространство представляет собой замкнутую трехмерную сферу, подобную стационарной модели Эйнштейна. Поэтому объем пространства Вселенной конечен. Однако радиус сферы в данном случае изменяется во времени. Вселенная начинает свою жизнь в некий нулевой момент времени со сферы нулевого радиуса, т.е. с точки. Далее радиус растет до максимального значения, а затем уменьшается до превращения Вселенной вновь в точку. Точку в момент времени t=0 можно назвать «началом» Вселенной. Все выглядит так, как будто при t=0 произошло сотворение мира, или точнее, произошло рождение пространства и времени. При этом плотность вещества Вселенной в момент ее рождения была бесконечной.

Модель Фридмана, где Вселенная появляется из «точки» в некий момент времени t=0 и сразу начинает расширяться неограниченно во времени, называют открытой моделью Вселенной (рис. 1б). Пространство в данном случае обладает отрицательной кривизной, следовательно, бесконечно. Расширение в данном случае следует понимать в том смысле, что расстояние между любыми двумя точками пространства, хотя оно и бесконечно, все время возрастает. Другими словами, все точки пространства убегают друг от друга, оставаясь полностью равноправными в любой момент времени. Отсутствие выделенных точек пространства — следствие его однородности. Расширение началось сразу из всех точек пространства. Понимание этого усложняется тем, что все пространство в начале расширения следует считать бесконечным.

В третьей модели Фридмана Вселенная также расширяется неограниченно во времени, но пространство всегда остается евклидовым, т.е. плоским. Эту наипростейшую модель из всех трех Фридман, по-видимому, сам не рассматривал. Впервые ею воспользовались в 1932 году Эйнштейн и де Ситтер.

Таким образом, теория разрешает существование трех различных моделей Фридмана. Каждой из них соответствуют свое решение уравнения тяготения ОТО. В это уравнение при его применении ко всей Вселенной входит некий параметр ρк, называемый критической плотностью. Ее величина зависит от времени. Если соответствующая данному моменту времени реальная плотность вещества Вселенной больше ρк. То реализуется закрытая модель трехмерной сферы, т.е. вещества во Вселенной достаточно, чтобы замкнуть само на себя. Если ρ>ρк, то Вселенная открыта, а ее кривизна отрицательна, т.е. вещества во Вселенной недостаточно, чтобы замкнуть само на себя.

При условии ρ= ρк имеет место открытая модель Эйнштейна — де Ситтера.

Число моделей не ограничивается четырьмя, которые мы рассмотрели. На какой же модели сделала свой выбор Природа? Ответ на этот вопрос, хотя и частичный, был получен в 1929 году Эдвиным Хабблом. Он сумел доказать, что Вселенная расширяется.

Источник

Adblock
detector