Меню

Космос черные дыры космоса галактики

8 самых больших черных дыр во Вселенной — Согласно их солнечным массам

Самый большой тип черных дыр — так называемые сверхмассивные черные дыры — имеют массы порядка от сотен тысяч до миллиардов масс Солнца. Масса нашего Солнца составляет 1,989 x 10 30 кг, что примерно в 333 000 раз больше массы Земли.

Предполагается, что почти все большие галактики содержат сверхмассивную черную дыру, расположенную в центре галактики. На самом деле существует тесная связь между образованием черной дыры и самой галактикой.

Хотя во вселенной существуют миллионы сверхмассивных черных дыр, невероятно массивные из них редки, и на сегодняшний день идентифицировано лишь малое их количество.

Определить массу большой черной дыры крайне сложно

Чтобы измерить массу сверхмассивных черных дыр, ученые используют различные сложные методы, в том числе доплеровские измерения, отображение реверберации широкой эмиссионной линии, отношение M-сигма и дисперсию скорости.

Массы, полученные из этих методов, часто противоречат друг другу. Поэтому они все еще остаются в области открытых исследований.

Ниже мы собрали несколько самых больших черных дыр с известными массами, измеренными по крайней мере на порядок. Список далеко не полон, но он дает приблизительное представление о том, насколько сложна и обширна наша вселенная.

8. Центральная черная дыра кластера Феникс

Солнечная масса: 2 × 10 10

Кластер Феникса является одним из самых массивных из известных кластеров, большая часть его массы находится в форме темной материи и внутрикластерной среды.

Сверхмассивная черная дыра в центральной галактике скоплений качает энергию в систему. Считается, что он в 20 миллиардов раз массивнее Солнца, а его горизонт должен составлять порядка 118 миллиардов километров в диаметре.

Данные Чандры и различные наблюдения на других длинах волн показали, что эта черная дыра растет быстро со скоростью, в 60 раз превышающей массу Солнца каждый год. Но так как он уже очень велик, этот показатель не является устойчивым. Рост не может длиться более 100 миллионов лет.

7. NGC 4889

Самая яркая сфера около центра — галактика NGC 4889, в которой находится космический сюрприз | Предоставлено: НАСА.

Солнечная масса: 2. 1 × 10 10

Обнаруженный в 1785 году, NGC 4889 является самой яркой галактикой в ​​северной части скопления комы, расположенной на среднем расстоянии 308 миллионов световых лет от Земли.

В основе NGC 4889 находится одна из самых больших черных дыр, которая нагревает внутрикластерную среду за счет трения, создаваемого падающей пылью и газами. Эта сверхмассивная черная дыра почти в 5200 раз массивнее центральной черной дыры Млечного Пути, и весит около 21 миллиарда солнечных масс.

Горизонт событий черной дыры имеет ширину от 20 до 124 миллиардов километров, что эквивалентно диаметру орбиты Плутона от 2 до 12 раз.

В настоящее время он дремлет, и вокруг него, кажется, остаются стабильные звезды. Тем не менее космический телескоп Хаббла обнаружил ионизированную среду вокруг сверхмассивной черной дыры, предполагая, что NGC 4889, возможно, был квазаром миллиарды лет назад.

Квазар — чрезвычайно яркое активное галактическое ядро, в котором сверхмассивная черная дыра окружена газообразным аккреционным диском. Он так сильно затягивает пыль и газ, что нагревает вещество до миллионов градусов, что приводит к огромным выбросам энергии.

6. APM 08279 + 5255

Солнечная масса: 2. 3 × 10 10

В 2002 году наблюдения Чандры показали, что высокоскоростные ветры уносят газы (до 40% скорости света) из сверхмассивной черной дыры, питающей квазар APM 08279 + 5255.

Квазар расположен в созвездии Рысь и имеет яркость, равную одному квадриллиону, яркости Солнца. Это яркий источник света практически на всех длинах волн, и он стал одним из наиболее исследованных отдаленных объектов.

Сверхмассивная черная дыра, питающая APM 08279 + 5255, весит 23 миллиарда солнечных масс (измеряется по скоростям молекулярного диска). Однако другой метод измерения, называемый реверберационным картированием, показывает, что черная дыра весит 10 миллиардов солнечных масс — огромная разница между обоими методами измерения.

Читайте также:  Прогресс связанный с освоением космоса

Двойное изображение квазара вызвано гравитационным линзированием (изгибанием его света галактикой, попавшей в него). Этот эффект также усиливает свет квазара в 100 раз, что позволяет углубленно изучить его характеристики, даже если он находится на расстоянии 12 миллиардов световых лет.

В последнее десятилетие исследователи также обнаружили, что APM 08279 + 5255 имеет достаточно воды, чтобы заполнить океаны Земли более чем в 100 триллионов раз.

5. NGC 6166

Солнечная масса: 3 × 10 10

NGC 6166 — одна из самых ярких эллиптических галактик [с точки зрения рентгеновского излучения], расположенная на расстоянии 490 миллионов световых лет в созвездии Геркулеса. Около 39 000 шаровых скоплений вращаются вокруг галактики, что указывает на то, что гало NGC 6166 плавно смешивается с внутрикластерной средой.

В центре галактики есть сверхмассивная черная дыра, масса которой в 30 миллиардов раз больше массы Солнца. Ежегодно он поглощает около 200 солнечных масс газа, создавая большие релятивистские струи.

Ученые предположили, что центр галактики может также содержать несколько звезд O-типа; редкие сине-белые звезды с температурой более 30000 кельвинов.

4. H1821 + 643

Солнечная масса: 3 × 10 10

Сильно светящийся квазар, H1821 + 643, расположен в гигантском кластере с сильным охлаждающим потоком в созвездии Драко.

В 2014 году исследователи обнаружили H1821 + 643 как одну из самых массивных черных дыр и точно рассчитали ее массу, которая эквивалентна 30 миллиардам солнечных масс. Горизонт событий черной дыры имеет ширину 1150 а.е. (1 астрономическая единица равна примерно 150 миллионам километров), а его средняя плотность составляет 22 грамма на метр куба, что меньше, чем воздух на Земле.

Исследователи также обнаружили, что внутрикластерная среда вокруг квазара существенно отличается от других крупных скоплений галактик — энтропия и температура значительно ниже и имеют гораздо более крутые градиенты.

Недавно детальный анализ квазара доказал, что наша вселенная заполнена огромными количествами ионизированного водорода, сопровождаемого ионизированным кислородом.

3. IC 1101

Солнечная масса: (4-10) × 10 10

IC 1101, одна из самых больших и ярких галактик во вселенной, содержит в своем центре сверхмассивную черную дыру, масса которой в 40-100 миллиардов раз превышает массу Солнца.

Это эллиптическая галактика, расположенная на расстоянии 1,04 миллиарда световых лет от Земли. Галактика имеет массу около 100 триллионов звезд и простирается на 2 миллиона световых лет от ее ядра.

Как и другие массивные галактики, IC 1101 содержит большое количество богатых металлами звезд, некоторым из которых 11 миллиардов лет, и они имеют золотисто-желтый цвет.

2. S5 0014 + 81

Солнечная масса: 4 × 10 10

S5 0014 + 81 относится к наиболее энергичному типу активных ядер галактик — это блазар, расположенный вблизи области высокого склонения созвездия Цефея, на расстоянии около 12,07 миллиардов световых лет от Земли.

Это 6-й самый яркий квазар, известный на сегодняшний день, с яркостью более 10 41 Вт. Чтобы поместить это в перспективу, это в 25 000 раз ярче, чем все звезды в галактике Млечный Путь вместе взятых.

Центральная черная дыра блазара чрезвычайно жестока — она ​​поглощает огромное количество материалов (более 4000 солнечных масс вещества) каждый год.

В 2009 году данные, полученные из Обсерватории Нила Герилса Свифта, позволили ученым рассчитать массу центральной черной дыры. Они обнаружили, что он в 40 миллиардов раз массивнее нашего Солнца, а его горизонт событий имеет ширину 236,7 миллиарда километров, что эквивалентно 40-кратному радиусу орбиты Плутона.

1. TON 618

Солнечная масса: 6,6 × 10 10

Тон 618 — это гиперлюминиевый квазар, расположенный в 10,37 миллиардах световых лет от Земли. Он содержит самую большую черную дыру [известную человечеству], вес которой в 66 миллиардов раз превышает массу нашего Солнца.

Впервые он был обнаружен в 1957 году при съемке слабых голубых звезд, которые не лежат на плоскости Млечного Пути. Более детальное радиообследование, проведенное в 1970 году, определило TON 618 как квазар.

Читайте также:  Космос как предчувствие как снимали

TON 618 считается аккреционным диском чрезвычайно горячего газа, циркулирующего вокруг массивной черной дыры в центре галактики. Это так ярко, что затмевает остальную часть галактики. Фактически, это один из самых ярких объектов во Вселенной со светимостью 4 × 10 40 Вт, что эквивалентно 140 000 миллиардов раз больше Солнца.

Поскольку газ в аккреционном диске движется с очень высокой скоростью (около 7000 км / с), черная дыра создает исключительно сильную гравитационную силу. И горизонт событий такой массивной черной дыры будет 2600 а.е. в диаметре.

Источник

Черные дыры: откуда они взялись и почему ученые так ими интересуются

Во Вселенной существуют триллионы различных объектов, природу большинства из них современная наука до сих пор не понимает до конца. В число этих объектов входят и черные дыры — одни из самых странных явлений в космосе, существование которых даже не могли предположить научные фантасты. «Хайтек» подробно рассказывает, как открывали черные дыры и сможет ли человечество в дальнейшем как-то использовать их.

Что такое черная дыра

Черной дырой в классическом понимании называют область пространства-времени, гравитационное притяжение которой настолько сильно, что ее не могут покинуть никакие объекты, движущиеся со скоростью света. Даже кванты самого света.

Граница черной дыры называется горизонтом событий, а ее размер — гравитационным радиусом. Черные дыры притягивают к себе материю, которая образовывает вокруг них аккреционный диск — гигантскую структуру вокруг черной дыры, которая быстро вращается. Именно из-за материи, светящейся во время вращения, ученым и удалось обнаружить существование черных дыр. При этом внутрь черной дыры попадает лишь небольшое количество этой материи, остальное отправляется обратно в космос в виде струи плазмы или джета, траектория которой совпадает с линиями магнитного поля. У некоторых черных дыр скорость движения этой плазмы достигает 99% от скорости света.

Сейчас в астрофизике существует четыре основных сценария образования черных дыр.

— Гравитационный коллапс очень массивной звезды. Согласно этой гипотезе, в конце своей жизни практически любая звезда с массой более трех солнечных, которая уже израсходовала все термоядерные реакции, может превратиться именно в такой тип сверхплотной материи — в нейтронную звезду, которая необходима для возникновения подобного искривленного участка Вселенной. По сути, это звезда, которая схлопывается под собственной тяжестью, увлекает за собой пространственно-временной континуум, находящийся вокруг нее. Гравитационное поле этого объекта становится настолько сильным, что из него не может вырваться даже свет. Поэтому эта область называется черной дырой.

— Коллапс центральной части галактики или области протогалактического газа. По сути, процесс появления черных дыр в этой гипотезе очень похож на первый вариант, только коллапсирует под собственным весом часть галактики, а не отдельная звезда. Эта гипотеза основана на наблюдении ученых, что практически каждая галактика имеет черную дыру в своем центре. Это не сходится с версией о появлении черных дыр из коллапсирующих звезд.

— Появление черных дыр в момент начального расширения Вселенной, так называемые первичные черные дыры. Согласно этой гипотезе, сразу же после Большого взрыва давление и температура в космосе были сверхвысокими. В таких условиях простые колебания плотности материи, например, начало расширения Вселенной, были достаточно значительными, чтобы появились территории с такой гравитацией. При этом большинство областей с высокой плотностью удалилось друг от друга из-за расширения Вселенной. Также космологами высказано предположение, что первичные черные дыры с массами в диапазоне от 10 14 до 10 23 кг могут составлять темную материю. Это наиболее тяжелые кандидаты на частицы темной материи.

— Возникновение черных дыр в ядерных реакциях высоких энергий. Подобные реакции используют для изучения частиц в адронных коллайдерах.

Кроме того, черными дырами ученые часто называют объекты, не полностью соответствующие их точному определению, а лишь приближающиеся по своим свойствам к ним. В эту же категорию входят коллапсирующие звезды на поздних стадиях коллапса.

С 1970-х годов в среде астрофизиков существует теория белых дыр — полной противоположности черных дыр, которые не пропускают в себя материю и энергию, а только выбрасывают ее. Согласно математическим расчетам, белые дыры должны выбрасывать энергию и материю в огромном количестве, однако на сегодняшний день ученые не смогли найти доказательство существования этих космических объектов. Существует множество теорий возникновения белых дыр, начиная с того, что белой дырой был Большой взрыв, и заканчивая возникновением этого объекта в результате смерти черной дыры. Подробнее об этом типе космических объектов «Хайтек» подробно рассказывал здесь .

Читайте также:  Викторина про космос с вариантами ответами

При этом пока неизвестно, что становится с черными дырами после их смерти. Ученые считают, что Вселенная еще слишком молода для разрушения первых из них. Согласно математическим расчетам Стивена Хокинга, черные дыры должны постепенно просто испаряться, отдавая свою энергию в окружающую среду.

Открытие черных дыр

Концепция существования массивного тела, гравитационное притяжение которого настолько велико, что скорость, которая необходима для его преодоления, превышает скорость движения света (а значит физически не может существовать во Вселенной), была впервые выдвинута английским ученым Джоном Мичеллом в 1784 году.

В своем письме в Королевское общество он рассказал, что в космосе может существовать множество таких недоступных наблюдению объектов радиусом в 500 солнечных, но с плотностью Солнца, гравитация которых не позволит свету выйти наружу.

Однако эта гипотеза вскоре была забыта, поскольку в рамках классической физики скорость света не имеет фундаментального значения. И только после того, как в 1905 году Альберт Эйнштейн в своей специальной теории относительности (СТО) использовал разработки электродинамики Лоренца, скорость света оказалась предельной, которую может развивать физическое тело. Это радикально изменило значение черных дыр в теоретической физике.

Следующий большой вклад в их изучение внес индийский нобелевский лауреат Субраманьян Чандрасекар, который создал фундаментальную для этого направления монографию — «Математическая теория черных дыр». Он изучал строение массивных звезд и возможное их превращение в нейтронные звезды либо черные дыры. Кроме того, он первым выдвинул теорию «об отсутствии волос» — о том, что у стационарной черной дыры нет внешних характеристик, помимо массы, момента импульса и определенных зарядов (специфических для различных материальных полей).

Фактически существование черных дыр было доказано только в 2015 году, а первый снимок их тени был сделан в апреле 2019 года — многие научные эксперты признали это открытие главным научным прорывом последнего десятилетия.

Существует несколько типов черных дыр:

  • Черная звезда звездной массы. Такие объекты, согласно общепринятым гипотезам, возникают в результате коллапса звезды. Минимальная масса тела, которая должна создать такой объект, составляет около трех солнечных.
  • Черная звезда средней массы. Промежуточный этап черной дыры, которая увеличилась за счет поглощения в себя газовых скоплений либо соседней звезды в системах парных звезд.
  • Сверхмассивные черные дыры. Объекты с массой с 10 5 –10 11 масс Солнца с достаточно невысокой плотностью и слабыми приливными силами. Именно такая черная дыра находится в центре Млечного пути.
  • Ультрамассивные черные дыры. Достаточно редкое явление во Вселенной. Например, в центре галактики Holm 15A, самой яркой в скоплении галактик Абель, ученые недавно обнаружили ультрамассивную черную дыру с массой в 40 млрд солнечных. Пока это самый тяжелый объект во Вселенной, известный ученым. Обнаружить объект исследователям удалось в ходе наблюдений за движением звезд в этой галактике. Его масса вдвое больше, чем у предыдущих рекордсменов. Кроме того, он в 10 000 раз массивнее, чем черная дыра Стрелец А* в центре Млечного пути.

Сколько черных дыр во Вселенной?

Никто не знает, поскольку наблюдать их достаточно сложно, и человечество пока находится только в самом начале изучения этих космических объектов. Точно известно, что в Млечном пути ученые обнаружили около десятка, однако в нашей галактике до 400 млрд звезд, из которых каждая тысячная имеет достаточно массы, чтобы образовать в конце своего существования черную дыру.

Источник

Adblock
detector