Меню

Космос что за ним где кончается

Что находится на краю Вселенной?

В 2019 году это обычная эмоция — желать по четыре-пять раз на дню отправиться не то, чтобы в космос, но на самый край света, как можно дальше, чтобы избавиться от дурного наваждения или плохой погоды, задерживающегося поезда или тесных брюк, таких заурядных на Земле вещей. Но что будет ждать вас на этой космологической границе? Что это вообще такое — край света, край Вселенной — что мы там увидим? Это граница или бесконечность вообще?

Давайте спросим у ученых.

Что находится на краю света

Шон Кэрролл, профессор физики Калифорнийского технологического института

«Насколько мы знаем, у Вселенной нет границ. У наблюдаемой Вселенной есть край — предел того, что мы можем увидеть. Это связано с тем, что свет движется с конечной скоростью (один световой год в год), поэтому, когда мы смотрим на далекие вещи, мы вглядываемся назад во времени. В самом конце мы видим, что происходило почти 14 миллиардов лет, остаточное излучение Большого Взрыва. Это космический микроволновый фон, который окружает нас со всех стороны. Но это не физическая «граница», если уж так посудить.

Поскольку мы можем видеть лишь настолько далеко, мы не знаем, на что похожи вещи за пределами нашей наблюдаемой Вселенной. Та вселенная, которую мы видим, довольно однородна в больших масштабах и, возможно, так будет продолжаться буквально всегда. В качестве альтернативы вселенная могла бы свернуться в сферу или тор. Если это так, вселенная будет ограничена по общему размеру, но все равно не будет иметь границы, точно так же, как круг не имеет начала или конца.

Также возможно, что вселенная неоднородна за пределами того, что мы можем видеть, и что условия сильно отличаются от места к месту. Эту возможность представляет космологическая мультивселенная. Мы не знаем, существует ли мультивселенная в принципе, но поскольку не видим ни то, ни другое, разумно было бы сохранять непредвзятость».

Джо Данкли, профессор физики и астрофизических наук в Принстонском университете

«Да все то же самое!

Окей, на самом деле мы не считаем, что у вселенной есть граница или край. Мы думаем, что она либо продолжается бесконечно во всех направлениях, либо оборачивается вокруг себя, так что она не является бесконечно большой, но все равно не имеет краев. Представьте поверхность пончика: у нее нет границ. Может быть, вся вселенная такая (но в трех измерениях — у поверхности пончика всего два измерения). Это значит, что вы можете отправиться на космическом корабле в любом направлении, и если будете путешествовать достаточно долго, вернетесь туда, откуда начали. Нет края.

Но есть также то, что мы называем наблюдаемой вселенной, которая является частью пространства, которую мы можем реально видеть. Край этого места находится там, откуда свету не хватило времени, чтобы добраться до нас с начала существования вселенной. Мы можем увидеть только такой край, а за ним, вероятно, будет все то же самое, что мы видим вокруг: сверхскопления галактик, в каждой из которых миллиарды звезд и планет».

Поверхность последнего рассеяния

Джесси Шелтон, доцент кафедры физики и астрономии Университета Иллинойса в Урбана-Шампейн

«Все зависит от того, что вы подразумеваете под краем вселенной. Поскольку скорость света ограничена, чем дальше и дальше в космос мы смотрим, тем дальше и дальше назад во времени мы заглядываем — даже когда смотрим на соседнюю галактику Андромеду, мы видим не то, что происходит сейчас, а что происходило два с половиной миллиона лет назад, когда звезды Андромеды излучали свет, попавший в наши телескопы только сейчас. Самый старый свет, который мы можем увидеть, пришел из самых дальних глубин, поэтому, в некотором смысле, край вселенной — это самый древний свет, который нас достиг. В нашей вселенной это космический микроволновый фон — едва заметное, продолжительное послесвечение Большого Взрыва, которое отмечает момент, когда Вселенная остыла достаточно, чтобы позволить сформироваться атомам. Это называется поверхностью последнего рассеяния, поскольку отмечает место, где фотоны перестали прыгать между электронами в горячей, ионизированной плазме и начали вытекать через прозрачное пространство, на миллиарды световых лет в нашу сторону. Таким образом, можно сказать, что край вселенной — это поверхность последнего рассеяния.

Что находится на краю вселенной прямо сейчас? Ну, мы не знаем — и не можем узнать, нам пришлось бы ждать, пока свет, испущенный там сейчас и идущий к нам, пролетит много миллиардов лет в будущем, но поскольку вселенная расширяется все быстрее и быстрее, мы вряд ли увидим новый край вселенной. Можем лишь догадываться. На крупных масштабах наша вселенная выглядит по большей части одинаковой, куда ни глянь. Велики шансы, что если бы вы оказались на краю наблюдаемой вселенной сегодня, вы увидели бы вселенную, которая плюс-минус похожа на нашу собственную: галактики, больше и малые, во всех направлениях. Я думаю, что край вселенной сейчас это попросту еще больше вселенной: больше галактик, больше планет, больше живых существ, задающихся таким же вопросом».

Вселенная не плоская

Майкл Троксель, доцент физики в Университете Дьюка

Читайте также:  Ты мой космос ты моя награда

«Несмотря на то, что Вселенная, вероятно, бесконечна в размерах, на самом деле существует не один практический «край».

Мы думаем, что Вселенная на самом деле бесконечно — и у нее нет границ. Если бы Вселенная была «плоской» (как лист бумаги), как показали наши тесты с точностью до процента, или «открытой» (как седло), то она действительно бесконечна. Если она «закрыта», как баскетбольный мяч, то она не бесконечна. Однако, если вы зайдете достаточно далеко в одном направлении, вы в конечном итоге окажетесь там, откуда начали: представьте, что вы движетесь на поверхности шара. Как однажды сказал хоббит по имени Бильбо: «Убегает дорога вперед и вперед…». Снова и снова.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

У Вселенной есть «край» для нас — даже два. Это связано с частью общей теории относительности, которая гласит, что все вещи (включая свет) во Вселенной имеют ограничение скорости — 299 792 458 м/с — и этот предел скорости сохраняется всюду. Наши измерения также говорят нам, что Вселенная расширяется во всех направлениях, причем расширяется все быстрее и быстрее. Это значит, что когда мы наблюдаем объект, который очень далеко от нас, свету от этого объекта нужно время, чтобы добраться до нас (расстояние, деленное на скорость света). Хитрость заключается в том, что поскольку пространство расширяется, пока свет идет к нам, расстояние, которое должен пройти свет, также увеличивается с течением времени на пути к нам.

Итак, первое, что вы могли бы спросить: на каком самом дальнем расстоянии мы могли бы наблюдать свет от объекта, если бы он был испущен в самом начале существования Вселенной (которой около 13,7 миллиарда лет). Оказывается, это расстояние — 47 миллиардов световых лет (световой год примерно в 63 241 раз больше расстояния между Землей и Солнцем), и называется космологическим горизонтом. Можно поставить вопрос несколько иначе. Если бы мы отправили сообщение со скоростью света, на каком расстоянии мы могли бы его получить? Это еще интереснее, потому что скорость расширения Вселенной в будущем возрастает.

Оказывается, что даже если это послание будет лететь вечно, оно сможет добраться только до тех, кто находится сейчас на расстоянии 16 миллиардов световых лет от нас. Это называется «горизонт космических событий». Однако самая дальняя планета, которую мы могли наблюдать, находится в 25 тысячах световых лет, поэтому мы все равно могли бы поприветствовать всех, кто живет в этой Вселенной на сегодняшний момент. А вот самое дальнее расстояние, на котором наши нынешние телескопы могли бы различить галактику, составляет около 13,3 миллиарда световых лет, поэтому мы не видим, что находится на краю вселенной. Никто не знает, что находится на обоих краях».

Эбигейл Вирегг, доцент Института космологической физики им. Кавила при Чикагском университете

«Используя телескопы на Земле, мы смотрим на свет, исходящий из отдаленных мест Вселенной. Чем дальше находится источник света, тем больше времени требуется, чтобы этот свет попал сюда. Поэтому, когда вы смотрите на отдаленные места, вы смотрите на то, на что были похожи эти места, когда был рожден увиденный вами свет — а не на то, как эти места выглядят сегодня. Вы можете продолжать смотреть дальше и дальше, что будет соответствовать продвижению дальше и дальше назад во времени, пока не увидите нечто, что существовало спустя несколько тысячелетий после Большого Взрыва. До этого вселенная была настолько горячей и плотной (задолго до того, как появились звезды и галактики!), что любой свет во вселенной ни за что не мог зацепиться, его нельзя увидеть современными телескопами. Это и есть край «наблюдаемой вселенной» — горизонт — потому что за ним ничего не разглядеть. Время идет, этот горизонт меняется. Если бы вы могли посмотреть на Вселенную с другой планеты, вы вероятно увидели бы то же самое, что видим мы на Земле: ваш собственный горизонт, ограниченный временем, которое прошло с момента Большого Взрыва, скоростью света и расширением вселенной.

Космический корабль SpaceShip будет вмешать до 100 пассажиров, но до конца Вселенной он точно не долетит.

Как выглядит то место, которое соответствует земному горизонту? Мы не знаем, потому что можем увидеть это место таким, каким оно было сразу после Большого Взрыва, а не каким оно стало сегодня. Но все измерения показывают, что вся видимая вселенная, включая край наблюдаемой вселенной, выглядит примерно одинаково, так же, как и наша локальная вселенная сегодня: со звездами, галактиками, скоплениями галактик и огромным пустым пространством.

Мы также думаем, что вселенная намного больше той части вселенной, которую мы сегодня можем увидеть с Земли, и что у самой вселенной нет «края» как такового. Это просто расширяющееся пространство-время».

У вселенной нет границ

Артур Косовский, профессор физики Питтсбургского университета

«Одним из самых фундаментальных свойств вселенной является ее возраст, который, согласно различным измерениям, мы сегодня определяем как 13,7 миллиарда лет. Поскольку мы также знаем, что свет распространяется с постоянной скоростью, это означает, что луч света, который появился в ранние времени, прошел к сегодняшнему дню определенное расстояние (назовем это «расстоянием до горизонта» или «расстоянием Хаббла»). Поскольку ничто не может двигаться быстрее скорости света, расстояние Хаббла будет самым дальним расстоянием, которое мы когда-либо сможем наблюдать в принципе (если не обнаружим какой-либо способ обойти теорию относительности).

Читайте также:  Далекий космос для детей

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

У нас есть источник света, идущий к нам почти с расстояния Хаббла: космическое микроволновое фоновое излучение. Мы знаем, что у вселенной не существует «края» на расстоянии до источника микроволнового излучения, которое находится почти на целой дистанции Хаббла от нас. Поэтому мы обычно предполагаем, что вселенная намного больше, чем нам собственный наблюдаемый объем Хаббла, и что настоящий край, который может существовать, находится намного дальше, чем мы когда-либо могли наблюдать. Возможно, это неверно: возможно, край вселенной находится сразу за дистанцией Хаббла от нас, а за ним — морские чудища. Но поскольку вся наблюдаемая нами вселенная везде относительно одинакова и однородна, такой поворот был бы очень странным.

Боюсь, у нас никогда не будет хорошего ответа на этот вопрос. У Вселенной может вообще не быть края, а если он и есть, то будет достаточно далеко, чтобы мы его никогда не увидели. Нам остается постигать лишь ту часть Вселенной, которую мы действительно можем наблюдать».

А у вас есть предположения, что находится на краю Вселенной? Расскажите в нашем чате в Телеграме.

Источник

С чего начинается космос и где кончается Вселенная

С чего начинается космос и где кончается Вселенная? Как ученые определяют границы важных параметров в космическом пространстве. Все не так просто и зависит от того, что считать космосом, сколько насчитывать Вселенных. Впрочем — ниже все подробно. И интересно.

Атмосфера

«Официальная» граница между атмосферой и космосом – линия Кармана, проходящая на высоте около 100 км. Ее выбрали не только из-за круглого числа: примерно на этой высоте плотность воздуха уже настолько мала, что ни один аппарат не может лететь, поддерживаясь одними лишь аэродинамическими силами. Чтобы создать достаточную подъемную силу, потребуется развить первую космическую скорость. Такому аппарату крылья уже не нужны, поэтому именно на 100-километровой высоте проходит граница между аэронавтикой и астронавтикой.

Но воздушная оболочка планеты на высоте 100 км, конечно, не заканчивается. Внешняя ее часть – экзосфера – простирается вплоть до 10 тыс. км, хотя и состоит уже, в основном, из редких атомов водорода, способных легко покидать ее.

Солнечная система

Наверное, ни для кого не секрет, что пластиковые модели Солнечной системы, к которым мы так привыкли со школы, не показывают истинные расстояния между звездой и ее планетами. Школьная модель сделана так лишь для того, чтобы все планеты поместились на подставке. В действительности, все куда масштабнее.

Итак, центр нашей сис­темы – Солнце – звезда диаметром почти 1,4 млн. километров. Ближайшие к нему планеты – Меркурий, Венера, Земля и Марс – составляют внутреннюю область Солнечной системы. Все они имеют малое количество спутников, состоят из твердых минералов и (за исключением Меркурия) имеют атмосферу. Условно границу внутренней области Солнечной системы можно провести по Поясу астероидов, который находится между орбитами Марса и Юпитера, примерно в 2-3 раза дальше от Солнца, чем Земля.

Это царство гигантских планет и их многочисленных спутников. И первым из них является, конечно, громадный Юпитер, расположенный от Солнца примерно впятеро дальше, чем Земля. За ним следуют Сатурн, Уран и Нептун, расстояние до которого уже умопомрачительно велико – более 4,5 млрд. км. Отсюда до Солнца уже в 30 раз дальше, чем от Земли.

Если сжать Солнечную систему до размеров футбольного поля с Солнцем в качестве ворот, то Меркурий расположится в 2,5 м от крайней линии, Уран – у противоположных ворот, а Нептун – уже где-то на ближайшей парковке.

Самая удаленная галактика, которую астрономы сумели наблюдать с Земли – это z8_GND_5296, расположенная на расстоянии примерно 30 млрд. световых лет. Но самым далеким объектом, который возможно наблюдать в принципе, является реликтовое излучение, сохранившееся практически со времени Большого взрыва.

Ограниченная им сфера наблюдаемой Вселенной включает более 170 млрд. галактик. Представьте: если бы вдруг они превратились в горошины, ими можно было бы заполнить целый стадион «с горкой». Звезд здесь – сотни секстиллионов (тысяч миллиардов). Она охватывает пространство, которое тянется на 46 млрд. световых лет во всех направлениях. Но что лежит за ним – и где Вселенная заканчивается?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история, о которой мы как-нибудь еще расскажем.

Пояс, облако, сфера

Плутон, как известно, утратил статус полноценной планеты, перейдя в семейство карликов. К ним относятся вращающаяся неподалеку от него Эрида, Хаумеа, другие малые планеты и тела пояса Койпера.

Читайте также:  Фольга ты просто космос

Эта область исключительно далека и обширна, она тянется, начиная с 35‑ти расстояний от Земли до Солнца, и до 50-ти. Именно из пояса Койпера во внут­ренние области Солнечной системы прилетают короткопериодические кометы. Если вспомнить наше футбольное поле, то пояс Койпера находился бы в нескольких кварталах от него. Но и здесь до границ Солнечной системы еще далеко.

Облако Оорта пока остается местом гипотетическим: уж очень оно далеко. Однако существует немало косвенных свидетельств того, что где-то там, в 50-100 тыс. раз дальше от Солнца, чем мы, находится обширное скопление ледяных объектов, откуда к нам прилетают долгопериодические кометы. Это расстояние так велико, что составляет уже целый световой год – четверть пути до ближайшей звезды, а в нашей аналогии с футбольным полем – в тысячах километрах от ворот.

Но гравитационное влияние Солнца, пускай и слабое, простирается еще дальше: внешняя граница облака Оорта – сфера Хилла – находится на расстоянии двух световых лет.

Рисунок, иллюстрирующий предполагаемый вид облака Оорта

Гелиосфера и гелиопауза

Не стоит забывать, что все эти границы являются довольно условными, как та же линия Кармана. За такую условную границу Солнечной системы считают не облако Оорта, а область, в которой давление солнечного ветра уступает межзвездному веществу – край ее гелиосферы. Первые признаки этого наблюдаются на расстоянии примерно в 90 раз большем от Солнца, чем орбита Земли, на так называемой границе ударной волны.

Окончательная остановка солнечного ветра должна происходить в гелиопаузе, уже в 130-ти таких дистанций. В такую даль не добирались еще ни одни зонды, кроме американских Voyager-1 и Voyager-2, запущенных еще в 1970-х годах. Это самые далекие на сегодня искусственно созданные объекты: в прошлом году аппараты пересекли границу ударной волны, и ученые с волнением следят за данными, которые зонды время от времени присылают домой на Землю.

Пузырь в рукаве

Все это – и Земля с нами, и Сатурн с кольцами, и ледяные кометы облака Оорта, и само Солнце – мчится в очень разреженном Местном межзвездном облаке, от влияния которого нас как раз и ограждает солнечный ветер: за пределы границы ударной волны облачные частицы практически не проникают.

На таких расстояниях пример с футбольным полем окончательно теряет удобство, и нам придется ограничиться более научными мерами длины – такими, как световой год. Местное межзвездное облако тянется примерно на 30 световых лет, и через пару десятков тысяч лет мы его покинем, войдя в соседнее (и более обширное) G-облако, где сейчас находятся соседние с нами звезды – Альфа Центавра, Альтаир и другие.

Все эти облака появились в результате нескольких древних взрывов сверхновых, которые образовали Местный пузырь, в котором мы движемся уже минимум последние 5 млрд. лет. Он тянется уже на 300 световых лет и входит в состав рукава Ориона – одного из нескольких рукавов Млечного пути. Хотя он гораздо меньше других рукавов нашей спиральной галактики, его размеры на порядки больше Местного пузыря: более 11 тыс. световых лет в длину и 3,5 тыс. в толщину.

3D представление Местного пузыря (Белый) с примыкающим Местным межзвездным облаком (розовый) и частью Пузыря I (зеленый).

Млечный путь в своей группе

Расстояние от Солнца до центра нашей галактики составляет 26 тыс. световых лет, а диаметр всего Млечного пути достигает 100 тыс. световых лет. Мы с Солнцем остаемся на его периферии, вместе с соседними звездами вращаясь вокруг центра и описывая полный круг примерно за 200 – 240 млн. лет. Удивительно, но когда на Земле царили динозавры, мы были на противоположной стороне галактики!

К диску галактики подходят два мощных рукава – Магелланов поток, включающий газ, перетянутый Млечным путем от двух соседних карликовых галактик (Большого и Малого Магеллановых облаков), и поток Стрельца, куда входят звезды, «оторванные» от другой карликовой соседки. С нашей галактикой связаны и несколько небольших шаровых скоплений, а сама она входит в гравитационно связанную Местную группу галактик, где их насчитывается около полусотни.

Ближайшая к нам галактика – Туманность Андромеды. Она в несколько раз больше Млечного пути и содержит около триллиона звезд, находясь от нас на 2,5 млн. световых лет. Граница же Местной группы находится и вовсе на умопомрачительном удалении: диаметр ее оценивается в мегапарсек – чтобы преодолеть это расстояние, свету понадобится около 3,2 млн. лет.

Но и Местная группа бледнеет на фоне крупномасштабной структуры размерами около 200 млн. световых лет. Это – Местное сверхскопление галактик, куда входит около сотни таких групп и скоплений галактик, а также десятки тысяч отдельных галактик, вытянутых в длинные цепочки – филаменты. Дальше только – границы наблюдаемой Вселенной.

Вселенная и дальше?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история.

Источник

Adblock
detector