Астрономия будущего
Вопрос о том, что мы знаем (а чего мы не знаем) о космосе, естественно, волнует сейчас умы. И не только в плане, если так можно выразиться, «утилитарном», то есть в плане практического интереса к тем планетам Солнечной системы, к которым в ближайшем будущем полетят космонавты, и к межпланетной среде, через которую будут летать их ракеты. Изучение Вселенной, понимание природы процессов, происходящих на отдаленных космических телах, представляют огромный познавательный интерес.
Один известный астроном совершенно правильно в этой связи заметил: «Человек, в частности, тем отличается от животных, что иногда поднимает глаза к небу…»
Раньше астрономия больше основывалась на философских взглядах. Теперь же, с развитием технологий это более точная наука. Безусловно, сегодня она тесно переплетается с математикой, физикой, химией и биологией. Несомненно, философия также не исключена из основ астрономии.
Из настоящего в будущее
Астрономия в настоящее время развивается очень интенсивно. Усовершенствовалась методика наблюдений и обработки, появились новые телескопы, о которых раньше не могли и мечтать, космические станции и обсерватории, которых раньше не было.
Космический телескоп Хаббл
Появились регулярно осматривающие небо телескопы-роботы. Компьютеры способны моделировать сложнейшие небесные явления, не прибегая к языку формул. Ученые добились больших успехов во всех направлениях – начиная от исследования тел Солнечной системы и заканчивая далекими галактиками.
Ключевые вопросы на ближайшее десятилетие включают определение природы темной материи, которая наполняет Вселенную.
В то время как любители мечтают о появлении яркой кометы или сверхновой звезды, надежды профессионалов связаны с открытием многочисленных новых планетезималей (очень малых небесных тел), доказывающих, что Пояс Койпера действительно существует. Они рассчитывают также обнаружить действующие вулканы на Венере, доказательства существования подземных вод на Марсе, а может быть, даже и признаков жизни на этой планете.
Поиски внеземного разума
Одной из важнейших задач астрономии остаются поиски жизни на планетах, обращающихся вокруг других звезд, – к настоящему моменту найдено около четырех тысяч планет, расположенных вне Солнечной системы. Относительно недавно на одной из них обнаружили условия, подходящие для жизни земного типа – речь идет о планете возле ближайшей к Солнечной системе звезды Проксима Центавра. При этом никаких признаков жизни на ней пока еще не обнаружили.
Вопрос о существовании жизни на Марсе по-прежнему остается для нас одним из самых злободневных. Многие ученые надеются так или иначе решить этот вопрос с помощью автоматических космических станций и проектируют для этой цели необходимые приборы.
Величайшим из открытий явилось бы обнаружение сигналов, посланных из глубин космоса другой цивилизацией. Поиски внеземного разума — не фантастика. И хотя многие астрономы сомневаются в том, что такие сигналы когда-либо будут обнаружены, другие, напротив, убеждены, что человечество является лишь одним из многих носителей разума в нашей Галактике, а потому они ведут упорные и обстоятельные поиски сигналов внеземных существ.
Если бы их удалось когда-нибудь обнаружить, это было бы самым важным открытием за всю историю человечества. Тогда мы могли бы убедиться в том, что мы не одиноки во Вселенной.
Что же ждет астрономию в будущем?
Более четверти ведущих российских астрономов приняли участие в коллективном опросе, основной целью которого было выявить наиболее вероятные и невероятные события будущего.
События, которые, по мнению более половины ответивших экспертов, не произойдут никогда (в скобках указана вероятность наступления события):
- В Солнечной системе будет обнаружено новое тело крупнее Марса (21%)
- Будет обнаружена Сфера Дайсона (36%)
Сфера Дайсона — гипотетический астроинженерный проект, предложенный Фрименом Дайсоном, представляющий собой относительно тонкую сферическую оболочку большого радиуса (порядка радиуса планетных орбит) со звездой в центре.
- Будет доказан факт посещения Земли внеземной цивилизацией (23%)
- Будут обнаружены белые дыры (38%)
В ближайшем будущем (до конца двадцатых годов нашего века) по мнению экспертов следует ожидать наступления следующих событий (указан год наступления события с ошибкой, в скобках указана вероятность наступления события):
- 2027±21: будет обнаружена вода на Луне (64%)
- 2027±32: астрономия снова станет обязательным предметом в российских школах (80%)
- 2027±13(!): на Землю будет доставлен образец марсианского грунта (100%)
- 2028±26: будет разгадана природа гамма-всплесков (100%)
Согласно коллективному мнению экспертов, тридцатые годы будут весьма богаты на события в области астрономии и исследования космического пространства:
- 2031±22: возобновится активное изучение Венеры (97%)
- 2033±31: будут обнаружены черные дыры промежуточной массы (84%)
Конец сороковых годов ознаменуется следующими событиями:
- 2040±25: будет сооружен оптический телескоп диаметром 100 м (87%)
- 2043±35: будет разгадана природа темной материи (96%)
- 2043±39: человечество определит природу Красного пятна на Юпитере (99%)
Красное пятно Юпитера
- 2044±83: будет однозначно доказано существование черных дыр (90%)
- 2047±32: состоится высадка человека на Марс (95%)
- 2049±36: будет разгадана природа темной энергии (97%)
- 2049±59: будет обнаружена экзопланета, на которой присутствуют все четыре биомаркера: вода, углекислый газ, метан и кислород (99%)
- 2049±64: начнутся регулярные полеты частных космических кораблей (93%)
В пятидесятые годы по мнению экспертов должны произойти следующие события:
- 2050±48: для космических перелетов начнут использовать солнечный парус (79%)
- 2052±34: будет создана постоянная астрономическая обсерватория на Луне (95%)
В конце XXI века ожидается наступление следующих событий:
- 2070±44: состоится полет человека за орбиту Марса (94%)
- 2071±44: человечество гарантированно защитит себя от угрозы астероидно-кометной опасности (72%)
- 2073±60: человек получит первые образцы атмосферы Сатурна (90%)
- 2078±67: человечество научится использовать внеземные источники сырья (91%)
- 2079±97: туристические полеты в космос станут доступными не только единицам (83%)
- 2090±120: будут обнаружены «кротовые норы» (57%)
Кротовая Нора в космосе в представлении художникм
В XXII веке прогнозируется следующее:
- 2110±140: доля солнечной энергии в энергетике человечества превысит 50% (74%)
- 2150±200: начнет работать общественный транспорт по маршруту «Земля — Луна» (72%)
- 2170±240: ожидается падение на Землю метеорита размером не менее Тунгусского (83%)
- 2250±360: будет обнаружен радиосигнал внеземной цивилизации(50%)
- 2280±320: будет установлен контакт с инопланетянами (50%)
Как уже стало ясно, астрономия — это наука нацелена на изучение и исследование явлений и объектов Вселенной. Разумеется, для того, чтобы понять саму суть Вселенной. Узнать структуру и особенности.
Благодаря астрономии мы уже многое узнали. В дальнейшем, можно с уверенностью сказать, нас ждёт еще много нового. Ведь прогресс не стоит на месте. Без сомнения, наука развивалась, развивается и будет развиваться.
Видео
Источник
Космические отели, высадка на Марсе и жизнь на альфе Центавра: каким будет космос через 60 лет
Один из самых известных футуристов — Рэй Курцвейл — предсказал к 2045 году технологическую сингулярность. Искусственный интеллект станет быстрее человека и будет развивать технологии с такой скоростью, что мы не сможем в них разобраться. Что касается ситуации в космонавтике, тут все проще. Уже сейчас можно попытаться дать прогноз на ближайшие 60 лет. Будем смотреть, каких пределов достигнем по максимуму. Потому что минимум мы имеем сегодня: войны, пандемии и человечество, застрявшее на орбите.
Как писатели-фантасты поспешили с космическим оптимизмом
Когда Юрий Гагарин полетел в космос, человечество уже сфотографировало обратную сторону Луны и даже отправило первые аппараты на Венеру и Марс (пока еще неудачно). В 1962 году президент США Джон Кеннеди поставил цель высадить астронавтов на Луну до конца десятилетия. А в СССР под руководством Сергея Королева проектировали корабль для пилотируемой экспедиции на Марс. Фантасты и вовсе послали космонавтов на все планеты Солнечной системы и даже за ее пределы, а корабли в их книгах перемещались с помощью фотонного двигателя на антивеществе.
Действительность оказалась сложнее и скучнее оптимистических планов. Человек после шести полетов к Луне так и не выбрался за пределы земной орбиты, хотя беспилотные космические станции улетели за орбиту Плутона и даже забирались в межзвездное пространство.
Чтобы вырваться за земную орбиту, нужна мегаракета
В конце XIX века калужский ученый-любитель Константин Циолковский вывел формулу для движения тела с переменной массой. Чтобы ракета могла двигаться быстрее, нужно было либо увеличить скорость истечения газов, либо увеличить долю топлива в общей массе ракеты. Но если первое изменить почти невозможно — скорость истечения газов зависит от топливной пары и практически фиксированная, то второе очень затратно. Масса топлива в ракетах составляет около 90% от общего веса, увеличивать ее просто некуда — нужны еще баки, чтобы залить в них топливо и окислитель, жилой модуль для космонавтов, корпус ракеты, наконец.
Например, американцам, чтобы слетать на Луну, пришлось создать ракету «Сатурн-5», масса которой была почти 3 тысячи тонн и высота — более 100 метров. Лунная программа обошлась США в $125 млрд по современному курсу. И если до Луны лететь три дня, то полет на Марс займет месяцев семь, — соответственно, увеличились бы и расходы. Стимул тратить такие деньги у США пропал, когда СССР не смог выполнить свою лунную программу.
Формула Циолковского с тех пор не изменилась, затраты на космос в таких масштабах уже не окупают политические и научные преимущества, получаемые в таких экспедициях. Зато появились новые технологии. Многие из них касаются усовершенствования систем управления, но есть и новые материалы, более мощные двигатели, а у SpaceX еще и возвращаемая первая ступень, благодаря которой снижаются затраты на миссии.
Лунные и марсианские надежды
Применение новых технологий и активное сотрудничество NASA с частными компаниями в разы снизило стоимость проектов. До 2030 года мы снова сможем увидеть человека на самой Луне и на ее орбите. Первоначально пилотируемые миссии планировались уже на ближайшие годы, но, скорее всего, немного сдвинутся. Если NASA и SpaceX затянут с посещением Луны, их могут опередить китайцы или «Роскосмос». Китай тратит на космос значительные ресурсы и может создать необходимые технологии за следующие десять лет. Россия уже имеет, пожалуй, лучшие ракетные двигатели в мире и продолжает их совершенствовать. К тому же наши страны недавно заключили меморандум о создании Лунной станции. Объединившись, они могут приблизить и высадку на Луну.
Пока Луна не представляет коммерческой ценности, но если возвращение к 2030 году удастся, то ее плотное изучение потребует постоянных лунных баз. А обнаруженные вода и полезные ископаемые, возможно, сделают выгодным коммерческое производство на Луне к 2081 году. Интересно, будет ли их видно с Земли?
Марс — более сложная цель. Но и при современных технологиях мы уже способны построить достаточно большие и мощные ракеты, чтобы обеспечить полет и возвращение людей на него. Расчеты показывают, что топливо, кислород и некоторые другие необходимые вещества можно будет добыть на Марсе, а значит, не придется их везти с Земли. По самым оптимистичным подсчетам — конечно, их сделал фанат Красной планеты Илон Маск, — астронавты смогут высадиться на Марс в 2028 году. Думаю, что более реальна высадка к 2040 году — все-таки сначала надо отработать все элементы пилотируемой миссии на Луне.
Не уверен, что действительно можно рассчитывать на создание колонии на Марсе, но если удастся, например, обнаружить на Красной планете жизнь или следы ее присутствия в прошлом, то планете будет обеспечен интерес и регулярные миссии, как пилотируемые, так и автоматические.
Увы, для человека это все. Высадка на Венеру практически невозможна — слишком тяжелым будет посадочный модуль для космонавтов, чтобы выдержать давление 90 атмосфер и температуру 470 градусов на поверхности соседней планеты. Да и передвигаться в таких условиях тяжело. Можно помечтать о высадке сразу в дирижабле в слои атмосферы с более привычными давлением и температурой, однако схема выглядит сложной и, главное, цель непонятна. На Луне и Марсе человек сможет использовать свои преимущества перед роботами, чтобы выполнять исследования или даже работать. На Венере слишком сложные условия, чтобы найти достойную цель для отправки туда человека.
Роботы в поисках жизни
Одним из самых чудесных открытий для человека было бы найти братьев по разуму, иные цивилизации. Желательно те, которые мы сможем понять и с которыми сможем общаться. Пока не обнаружено надежных признаков их существования, но за прошедшие 60 лет наши устройства стали в миллиард раз чувствительнее. Можно надеяться, что в следующие 60 лет они продолжат свой прогресс и мы сможем еще внимательнее слушать Вселенную.
Пока мы стараемся найти жизнь в Солнечной системе. Текущий интерес к Марсу (его изучает больше аппаратов, чем все остальные тела Солнечной системы, кроме Земли) связан с тем, что на нем в прошлом были подходящие условия для жизни. Даже если эта жизнь вымерла, когда улетучилась с атмосферы Красной планеты, хотелось бы узнать, какой она была. Хорошие шансы найти жизнь и на спутниках Юпитера и Сатурна — Европе и Энцеладе. По современным данным, под их ледяной оболочкой находится водяной океан — тепла от недр достаточно, чтобы он не замерзал. Вполне подходящие условия, чтобы зародилась жизнь, пусть и простейшая.
Миссия Europa Clipper к Европе подтверждена, но год запуска пока не определили. Оптимистичный сценарий — это 2025 год, еще лет шесть уйдет на преодоление расстояния от Земли до спутника Юпитера. Уже в начале 2030-х мы можем узнать, существует ли там жизнь. Позднее отправят космический аппарат и для изучения Энцелада. Параллельно «Роскосмос» планирует к 2029 году запустить миссию на Венеру. Одной из ее задач также будет поиск признаков текущей или существовавшей ранее жизни. Возможно, этим поискам помогут и другие страны. Если в Солнечной системе есть или была жизнь за пределами Земли, то уже к 2040 году мы будем знать об этом.
Как мы будем искать следы жизни в альфа Центавре
Пока мы не можем отправиться искать жизнь за пределы Солнечной системы, но уже начали разведку: с помощью телескопов обнаружено около 5 тысяч экзопланет. Процесс их открытия ускоряется: запущенный в 2018 году телескоп TESS открывает их пачками, а наземные обсерватории помогают их подтвердить. Чем больше планет, тем больше шанс, что на какой-то из них будет жизнь. Для этого надо изучить и классифицировать экзопланеты, подобрав потенциально обитаемые миры.
Практически все экзопланеты открыты за последние 20 лет, и темп их обнаружения ускоряется. А телескоп имени Джеймса Уэбба потенциально нам позволит проанализировать атмосферу экзопланет, находящихся в многих световых годах от нас, чтобы найти биомаркеры — вещества, которые обычно порождают живые существа: кислород, метан, фосфин и другие. Его ввод в строй ожидался в 2007 году и с тех пор постоянно переносится, но он может начать работать в ближайшие годы.
Конечно, даже обнаружение планеты с живыми существами не гарантирует, что на ней разовьется разумная жизнь. Но и просто найти бактерии вне Земли будет большим открытием. Это позволит изучить принципы, по которым мы сможем предсказать, в каких условиях стоит искать жизнь, и сузить круг планет, на которых будем искать мыслящих существ.
В NASA уже готовят следующий совершенно фантастический шаг — попытаются разглядеть поверхность далеких экзопланет, очертания их континентов и свечения на поверхности (возможно, будет видно крупные города!). Миссия российского ученого Вячеслава Турышева с использованием солнечной гравитационной линзы прошла уже третью стадию отбора в конкурсе визионерских проектов. Это значит, что велика вероятность ее реализации. Идея в отправке телескопа в ту точку, где Солнце соберет лучи от выбранной планеты. Сначала с помощью таких инструментов, как TESS, телескоп Джеймса Уэбба и другие, выберут планеты, на которых с высокой вероятностью есть жизнь. После чего в противоположную от планеты сторону отправят телескоп, который в фокусе (области, где Солнце, как линза, соберет свет от этой планеты) рассмотрит ее увеличенное изображение. Вячеслав Турышев считает, что проект уже можно осуществить при нынешних технологиях, но потребуется развить их, выжать из них максимум. Подготовка может занять лет десять, еще 20−25 лет ракете понадобится, чтобы долететь до фокуса солнечного гравитационного телескопа. Значит где-то к 2060 году мы сможем увидеть поверхность далеких экзопланет.
Еще один амбициозный проект Breakthrough Starshot инициировал технологический инвестор Юрий Мильнер. Предлагается создать рой из небольших зондов и разогнать их до околосветовой скорости с помощью сверхмощных лазеров. Они могли бы примерно за 20 лет достичь соседней звездной системы и передать изображение планеты, которая может вращаться вокруг одного из трех светил звездной системы альфа Центавра. Этот проект требует решения множества технических проблем: нет достаточно мощных лазеров, не создан материал парусов, которые не сгорят под их светом, нет достаточно мощных чипов, чтобы передать сигнал на расстояние четырех световых лет, и антенн, способных его уловить.
Космический отель, космический лифт и огромная линза на земной орбите
Как ни странно, но самые заметные изменения могут произойти на орбите Земли. Кажется сегодня уже трудно удивить кого-то очередной съемкой Земли со спутников или запуском корабля на МКС, даже туристы на орбитальную станцию «Мир» летали.
Но что если на орбите откроют целый отель для космических туристов? Все-таки на МКС не так много места, а платить по $30−40 млн за билет покупатели будут с большим удовольствием, если у них будут просторные комнаты и большие иллюминаторы. Компания Voyager обещает начать строить его уже в 2025 году. Планы кажутся несколько оптимистичными, но опыт безопасного путешествия на орбиту и обратно у нас уже есть. Если приключение будет достаточно интересным, то появление отеля — просто вопрос времени.
Многие спутники работают на гелиосинхронной орбите, которая позволяет им никогда не заходить в тень Земли и постоянно вырабатывать электричество для своих бортовых схем. У Китая есть планы построить на орбите целую солнечную электростанцию к 2035 году. Ей не помешают работать ни ночь, ни пыль, ни снег. Однако выработанную энергию надо будет передавать на Землю, и тут еще предстоит поработать. Либо это будет сделано по лазерному лучу, но надо поработать над его мощностью и не спалить случайно какой-нибудь город. Либо пустить на Землю провод. А от этой идеи один шаг до создания космического лифта.
Космический лифт — давняя инженерная идея. У нас уже есть геостационарные спутники — высота их орбиты подобрана так, чтобы они вращались строго над определенной точкой Земли. Опустим с них трос и будем передавать на орбиту грузы, не тратя тысячи тонн горючего. Однако ни сталь, ни другие существующие вещества не позволят сделать такой длинный трос, способный выдержать собственный вес. В ближайшем будущем изделия на основе графена или других метаматериалов вполне могут обеспечить нужную прочность. Тогда будет проще закидывать на орбиту научные аппараты или ту же солнечную станцию.
Светодиодные лампочки сэкономили энергии уже на миллиарды долларов, однако можно еще удешевить свет. Например, запускать на орбиту зеркала, которые будут отражать лучи Солнца. У такого подхода свои сложности — большая площадь зеркала будет испытывать трение об атмосферу, которая очень сильно разрежена, но отнюдь не заканчивается на 100 километрах. Надо еще научиться, с одной стороны, точно фокусировать «зайчик» от зеркала на выбранном месте, а с другой — постараться не превратить его в гигантскую линзу, которая выжжет все под собой.
Мы уже можем увидеть на небе вереницы спутников связи Starlink. Если опыт компании Илона Маска окажется удачным, то многие компании смогут реализовать свои проекты с тысячами аппаратов связи на орбите. Тогда у нас будет и хорошая связь в любой точке Земли, и недорогая энергия. Но вот чистым звездным небом уже можно будет полюбоваться только из отеля, расположенного на высокой орбите.
Спустя 120 лет со дня полета Гагарина
За 20−40 лет можно успеть реализовать практически все задачи, которые касаются исследования Солнечной системы. Человек вернется на Луну, видимо, высадится на Марс и, возможно, найдет способ спуститься в атмосферу Венеры. Это все займет два-три года. А вот добраться до пояса астероидов и дальше за это время не получится. Пусть эти пространства могут быть интересны и не только ученым. Мы писали, что такие небесные тела, как Психея, могут содержать миллионы тонн драгоценных металлов, которые пригодились бы для растущих потребностей Земли. Правда, лететь очень долго, и в лучшем случае полеты будут в рамках автоматических миссий.
А может, не зря упомянутый в начале Рэй Курцвейл прогнозирует технологическую сингулярность? Пусть нас заменят роботы. На самом деле, больше чем на 20 лет очень трудно прогнозировать: например, в 1990-е планировали через 20 лет запустить термоядерный реактор (энергия почти даром и почти отсутствие радиации при поломке) и полностью секвенировать геном человека. Сейчас полноценный термоядерный реактор мы по-прежнему планируем запустить через 20 лет, а вот секвенирование генома провели ударными темпами в начале XXI века — сложно было учесть все факторы.
Для космоса одно из главный ограничений — время полета. Чтобы лететь быстрее, нужны новые двигатели. В проекте Вячеслава Турышева предлагается разгоняться, используя солнечный парус. При должных параметрах он позволит в разы сократить время путешествия.
Более сложный, но все еще возможный вариант — различные типы ядерных двигателей. Они разогревают топливо или ионизируют и ускоряют его электрическим полем и выбрасывают со скоростями, в разы превышающими таковые для существующих ракет. Помните о формуле Циолковского? Быстрее истечение газов, выше скорость ракеты!
А может быть, в будущем мы научимся создавать и применять антивещество в больших объемах для фотонных звездолетов за вменяемые деньги. Или нам удастся придумать новые принципы передвижения, не нарушая постулатов Общей теории относительности Эйнштейна, но обходя запрет на максимум в скорость света, проделывая кротовые норы в пространстве или находя короткие ходы через другие измерения.
Надеюсь, космос не ждет новая зима, как в 80-х годах XX века. И, учитывая развитие медицины, мы с вами вполне можем дожить до 120-летия со дня полета Гагарина, чтобы оценить точность этого прогноза.
Источник