Исследовательская работа «Космос»
исследовательская работа ученика 3 класса по теме «Космос»
Скачать:
Вложение | Размер |
---|---|
issledovatelskaya_rabota_uchenika_3_klassa.doc | 72 КБ |
prezentaciya_k_issledovatelskoy_rabote.ppt | 2.98 МБ |
Предварительный просмотр:
МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
АКТАНЫШСКОГО МУНИЦИПАЛЬНОГО РАЙОНА
Автор: Ахмадуллин Ильназ Ильфарович,
ученик 3 класса.
Руководитель: Ваншина Эльмира Гилемзяновна,
Актаныш, 2011 год.
Я учусь на «4» и «5». Хотя математика дается мне трудно, а вот окружающий мир и литературу я люблю. Как бабушка говорит я «любитель естественных наук». Я очень люблю читать энциклопедии.
2011 год объявлен годом Российской космонавтики. Для того чтобы узнать, что мои одноклассники знают о космосе, я решил провести опрос и задал такие вопросы:
- Что вы знаете о космосе?
- Кто создал первый космический аппарат?
- Кто первым полетел в космос?
Результаты опроса показали, что учащиеся имеют неполные, поверхностные знания о космосе.
Мне стало интересно:
- Как человек начал осваивать космическое пространство?
- Кто создал первый космический аппарат?
- Когда была запущена первая ракета?
- Кто первым полетел в космос?
Цель моей работы:
- сформировать знания о первых полетах в космос.
- Изучить историю освоения космоса человеком.
- Узнать, кто первым полетел в космос;
- Побольше узнать о первых космонавтах.
Объект исследования: Первые космонавты.
Предмет исследования: Первые полёты в космос.
Гипотеза: Предположим, что первыми в космос полетели российские космонавты.
Сроки выполнения исследовательской работы — январь-март, 2011 год.
- Подумать самостоятельно.
- Посмотреть книги о становлении космонавтики, о первых полетах в космос.
- Спросить у родителей, других людей.
- Познакомиться с кино- и телефильмами по данной теме проекта
- Обратиться к глобальной сети Интернет.
- Опрос.
- Сбор информации
- Проведение опроса среди одноклассников
- Показ презентации
- Анализ ответов, полученных после представления информации
Информация к проекту:
После того как человек изобрел самолет и завоевал небо, людям захотелось подняться еще выше.
Одним из первых о полете в космос задумался русский ученый Константин Эдуардович Циолковский. Судьба и жизнь Циолковского необычны и интересны.
Первая половина детства у Кости Циолковского была обычной, как у всех детей. Уже находясь в преклонном возрасте, Константин Эдуардович вспоминал, как ему нравилось лазить по деревьям, забираться на крыши домов, прыгать с большой высоты, чтобы испытать чувство свободного падения. Второе детство началось, когда заболев скарлатиной, почти полностью потерял слух. Глухота причиняла мальчику не только бытовые неудобства и моральные страдания. Она грозила замедлить его физическое и умственное развитие.
Костю постигло еще одно горе: умерла его мать. В семье остались отец, младший брат и неграмотная тетка. Мальчик остался предоставленным сам себе. Лишенный из-за болезни многих радостей и впечатлений, Костя много читает, постоянно осмысливая прочитанное. Он изобретает то, что изобретено давно. Но — изобретает сам. К примеру, токарный станок. Во дворе дома крутятся на ветру построенные им ветряные мельницы, бегают против ветра парусные тележки-самоходы.
Он мечтает о космических путешествиях. Запоем читает книги по физике, химии, астрономии, математике. Понимая, что его способного, но глухого сына не примут ни в одно учебное заведение, отец решает отправить шестнадцатилетнего Костю в Москву для самообразования. Костя в Москве снимает угол и с утра до вечера сидит в бесплатных библиотеках. Отец ежемесячно присылает ему 15 — 20 рублей, Костя же, питаясь черным хлебом и запивая его чаем, тратит в месяц на еду 90 копеек! На остальные деньги покупает книги.
Теперь мы уже знаем, что Константин Эдуардович Циолковский — гордость России, один из отцов космонавтики, великий ученый. И с удивлением многие из нас узнают, что великий ученый не учился в школе, не имел никаких научных степеней, но во всем мире теперь признан гением тот, кто первым начертал для человечества путь к иным мирам и звездам:
Все самые заветные мечты основоположников космонавтики воплотил Сергей Павлович Королев.
4 октября 1957 года стал знаменательной датой. В этот день был запущен первый искусственный спутник Земли. Началась космическая эра. Первый спутник Земли представлял собой блестящий шар из алюминиевых сплавов и был невелик — диаметром 58 см, весом — 83,6 кг.
Аппарат имел двухметровые усы-антенны, а внутри размещались два радиопередатчика. Скорость спутника составляла 28800 км/ч. За полтора часа спутник облетел весь земной шар, а за сутки полета совершил 15 оборотов. Сейчас на земной орбите находится множество спутников. Одни используются для телерадиосвязи, другие являются научными лабораториями.
Перед учеными стояла задача — вывести на орбиту живое существо. И дорогу в космос для человека проложили собаки. Испытания на животных начались еще в 1949 году. Первых «космонавтов» набирали в подворотнях. Это был первый отряд собак. Всего отловили 32 собачки.
Собак в подопытные решили взять, т.к. ученые знали, как они себя ведут, понимали особенности строения организма. Кроме того, собаки не капризны, их легко тренировать. А дворняг выбрали потому, что медики считали: они с первого дня вынуждены бороться за выживание, к тому же неприхотливы и очень быстро привыкают к персоналу. Собаки должны были соответствовать заданным стандартам: не тяжелее 6 килограммов и ростом не выше 35 см.
Помня, что собакам придется «красоваться» на страницах газет, отбирали «объекты» покрасивее, постройнее и с умными мордашками. Их тренировали на вибростенде, центрифуге, в барокамере: Для космического путешествия была изготовлена герметическая кабина, которая крепилась в носовой части ракеты.
Первый собачий старт состоялся 22 июля 1951 года — дворняги Дезик и Цыган выдержали его успешно! Цыган и Дезик поднялись на 110 км, потом кабина с ними свободно падала до высоты 7 км. На этой отметке раскрылся парашют, и оба «космонавта» благополучно приземлились. В тот день и была решена судьба пилотируемой космонавтки — живые существа могут летать на ракетах!
Больше всех радовался Королев. Он гладил животных, угощал их колбасой. Увы, второй запуск закончился неудачей: во время второго испытания Дезик и его напарница Лиса погибли — не раскрылся парашют. За весь период экспериментов — вплоть до весны 1961 года было запущено 29 ракет с животными. При этом погибло 10 собак.
Но бывали и курьезные случаи. Как-то вечером, накануне полета, лаборант вывел дворняг, которые должны были лететь, на прогулку. Один из псов, Смелый, уже побывал в космосе. Только лаборант отстегнул поводок, Смелый убежал — видимо, почувствовал, что опять предстоит полет. Как его не подманивали, назад не шел. И тогда вместо Смелого в полет отправили подходящую по размерам дворнягу, вымыли, выстригли шерсть в местах, где нужно наложить датчики, одели в комбинезончик. Запуск прошел нормально, животные вернулись живыми и здоровыми. Но Королев сразу обнаружил подмену. Пришлось рассказать, что произошло накануне. Тут лаборант сообщил, что хитрюга Смелый вернулся и преспокойно спит на своем месте.
После того, как на орбиту был выведен первый искусственный спутник Земли, Главный Конструктор решил отправить на втором спутнике собаку. Было ясно, что собака на Землю не вернется: спускаемого аппарата на корабле не было. Из трех кандидаток — их звали Альбина, Лайка и Муха — выбрали спокойную и ласковую Лайку. Было рассчитано, что собака проживет на борту неделю. Но в невесомости собака прожила всего несколько часов, корабль сильно нагрелся, и Лайка погибла от жары.
Японцы использовали изображение нашей дворняги как символ года Собаки. Во многих странах были выпущены почтовые марки с изображением Лайки. Основным годом «собачьего космоса» можно считать 1960-й.
Но в космос летали не только собаки, слетали 21 серых и 19 белых мышей.
Собаки Белка и Стрелка были уже настоящими космонавтами. Собаки прошли все виды испытаний. Они могут довольно длительно находиться в кабине без движения, могут переносить большие перегрузки, вибрации.
По телевидению показали кадры полета Белки и Стрелки. Было хорошо видно, как они кувыркались в невесомости. И, если Стрелка относилась ко всему настороженно, то Белка радостно бесилась и даже лаяла.
Белка и Стрелка стали всеобщими любимицами. Их возили по детским садам, школам, детским домам. Журналистам давали возможность собачек погладить, но предупреждали: как бы ненароком не цапнули.
Ученые продолжали исследования и наблюдения за собаками и на Земле. Предстояло выяснить, повлиял ли полет в космос на генетику животного. Стрелка дважды приносила здоровое потомство, милых щенят, которых мечтал бы приобрести каждый. Но все щенки были на учете, и за каждого персонально отвечали.
После триумфального полета Белки и Стрелки пошли черные полосы. 26 октября на стартовом столе взорвалась и сгорела ракета. В огне погибли 92 человека. А за 15 дней до этой трагедии было принято секретное решение о полете человека в космос. Назначался срок — декабрь 1960 года. К полету человека в космос уже все было готово. Оставалось выполнить одно условие: в космос должны успешно слетать два корабля с собаками.
Белка и Стрелка свою задачу выполнили. Настала очередь Пчелки и Мушки. 1 декабря корабль стартовал. В общей сложности собаки пробыли на орбите сутки. Все шло гладко, но когда дали команду на возвращение, произошел сбой. Вероятнее всего корабль сгорел. Старт человека отложили.
Сергей Павлович Королев не отступился от своего решения: два удачных старта — и летит человек.
9 марта 1961 года в космос ушла Чернушка. Собаке предстояло совершить один виток вокруг Земли и вернуться — точная модель полета человека. Все прошло гладко. 25 марта 1961 года стартовала Звездочка. И ей предстояло выполнить один оборот и приземлиться. Полет закончился удачно. Собачки свое отработали. Больше им в космос подняться было не суждено.
До полета человека в космос оставалось 18 дней.12 апреля 1961 года космический корабль «Восток» с первым космонавтом Юрием Алексеевичем Гагариным на борту совершил 1 виток вокруг нашей планеты и благополучно доставил космонавта на Землю. За участие в космическом проекте
Юрию Алексеевичу было присвоено звание Героя Советского союза
Работая над проектом, я узнал, что Россия является первым государством, проникнувшим в космос. Но для этого потребовались большие усилия ученых, испытателей, в числе которых были и собаки. Они еще раз доказали свою пользу человеку. Я очень горд, что первый человек в космосе – Россиянин!
Оказалось исследование космоса – очень интересное и полезное занятие. Я узнал много нового. Эти знания мне пригодятся в старших классах. Много материала не вошло в эту работу. Может быть в 4 классе напишу исследовательскую работу о звёздах или о планетах.
Источник
Как человек исследует космос?
Человек постоянно стремился к Небу. Сначала – мыслью, взором и на крыльях, затем – с помощью воздухоплавательных и летательных аппаратов, космических кораблей и орбитальных станций. О существовании галактик еще в прошлом веке никто даже не подозревал. Млечный Путь никем не воспринимался, как рукав гигантской космической спирали. Даже обладая современными знаниями, невозможно воочию увидеть такую спираль изнутри. Нужно удалиться на много-много световых лет за ее пределы, чтобы увидеть нашу Галактику в ее подлинном спиральном обличии.
Впрочем, астрономические наблюдения и математические расчеты, графическое и компьютерное моделирование, а также абстрактно-теоретическое мышление позволяют сделать это, не выходя из дома. Но стало это возможно лишь в результате долгого и тернистого развития науки. Чем больше мы узнаем о Вселенной, тем больше возникает новых вопросов
Эра телескопов
Изучение космоса началось еще с самых древних времен, когда человек только учился считать по звездам, выделяя созвездия. И только всего четыреста лет назад, после изобретения телескопа, астрономия начала стремительно развиваться принося в науку все новые открытия. Уже первые телескопы сразу резко повысили разрешающую и проницающую способность человеческого глаза. Постепенно были созданы приемники невидимых излучений и в настоящее время Вселенную мы воспринимаем во всех диапазонах электромагнитного спектра – от гамма-излучения до сверхдлинных радиоволн.
XVII век стал переходным веком для астрономии, тогда начали применять научный метод в исследовании космоса, благодаря которому был открыт Млечный путь, другие звездные скопления и туманности. А с созданием спектроскопа, который способен разложить через призму свет, излучаемый небесным объектом, ученые научились измерять данные небесных тел, такие, как температура, химический состав, масса и другие измерения.
К примеру, гелий был впервые обнаружен на Солнце, именно с помощью спектроскопа, и лишь затем ученые нашли этот химический элемент на Земле!
Более того, созданы приемники корпускулярных излучений, улавливающие мельчайшие частицы – корпускулы (в основном ядра атомов и электроны), приходящие к нам от небесных тел. Совокупность всех приемников космических излучений способны фиксировать объекты, от которых до нас лучи света доходят за многие миллиарды лет.
По существу, вся история мировой астрономии и космологии делится на две не равные по времени части – до и после изобретения телескопа.
ХХ век вообще необычайно раздвинул границы наблюдательной астрономии. К чрезвычайно усовершенствованным оптическим телескопам добавились новые, ранее совершенно невиданные -– радиотелескопы, а затем и рентгеновские (которые применимы только в безвоздушном пространстве и в открытом космосе). Также с помощью спутников используются гамма-телескопы, позволяющие зафиксировать уникальную информацию о далеких объектах и экстремальных состояниях материи во Вселенной.
Для регистрации ультрафиолетового и инфракрасного излучения используются телескопы с объективами из мышьяковистого трехсернистого стекла. С помощью этой аппаратуры удалось открыть много ранее не известных объектов, постичь важные и удивительные закономерности Вселенной.
Так, вблизи центра нашей галактики удалось обнаружить загадочный инфракрасный объект, светимость которого в 300 000 раз превышает светимость Солнца. Природа его пока неясна.
В открытый Космос
В последние 50 лет люди получили возможность покидать Землю и изучать звезды и планеты не только наблюдая их в телескопы, но и получая информацию прямо из космоса. Запускаемые спутники оснащены сложнейшим оборудованием, с помощью которого были сделаны удивительные открытия, в существование которых астрономы не верили, например, черные дыры и новые планеты.
Со времени запуска в открытый космос первого искусственного спутника в октябре 1957 года за пределы нашей планеты было отправлено множество спутников и роботов-зондов. Благодаря им ученые “посетили” почти все основные планеты Солнечной системы, а также их спутники, астероиды, кометы.
Начиная с конца XIX века астрономия вступила в фазу многочисленных открытий и достижений, главным прорывом науки в XX веке стало:
- запуск первого спутника в космос;
- первый полет человека в космос;
- выход в открытое космическое пространство;
- высадка на Луне;
- космические миссии к планетам Солнечной системы.
К границам Солнечной системы
Спутники и космические зонды неоднократно запускались к внутренним планетам: российская «Венера», американские «Маринер» к Меркурию и «Викинг» к Марсу. Запущенные в 1972-1973 гг. американские зонды «Пионер-10» и «Пионер-11» достигли внешних планет — Юпитера и Сатурна. В 1977 г. к Юпитеру, Сатурну, Урану и Нептуну были также запущены «Вояджер-1» и «Вояджер-2». Некоторые из этих зондов до сих пор продолжают летать у самых границ Солнечной системы, а некоторые уже покинули пределы Солнечной системы.
Космический аппарат Вояджер-1
Полеты на Луну
Самая близкая к нам Луна всегда была и остается весьма притягательным объектом для научных исследований. Поскольку мы всегда видим лишь ту часть Луны, которая освещена Солнцем, особый интерес представляла для нас и невидимая ее часть. Первый облет Луны и фотографирование ее обратной стороны осуществлены советской автоматической межпланетной станцией «Луна-3» в 1959 г. Если еще совсем недавно ученые просто мечтали о полетах на Луну, то сегодня их планы идут намного дальше: земляне рассматривают эту планету как источник ценных пород и минералов.
И вот на Серебряную планету 21 июля 1969 г. ступила нога первого человека. Астронавты собрали образцы лунной породы, провели над ней ряд экспериментов, данные о которых продолжали поступать на Землю в течение длительного времени после их возвращения. .
Человечество продолжает изучать Луну, проводя записки зондов для осуществления данной миссии.
Исследования галактик
В прошлом астрономам мало было известно о Галактиках. Далекие туманные объекты привлекли повышенное внимание лишь после изобретения телескопа. Постепенно было открыто более 100 таких объектов, и уже в XVIII в. был составлен первый каталог туманностей (туманность – космические скопления из газа и пыли, могут быть протяженностью в несколько тысяч световых лет.
Интенсивное изучение галактик, в том числе и с помощью радиотелескопов, открытие фонового излучения, новых космических объектов типа квазаров, излучающих в десятки раз больше энергии, чем самые мощные галактики, привело к возникновению новых загадок в изучении Вселенной.
Многими великими открытиями мы обязаны астрономам-любителям, которые часами просиживают в темноте, разглядывая ночное небо.
Именно любителями открыты многие новые звезды и кометы – к примеру, комета Хэйла-Боппа. Она была открыта благодаря случаю. В июле 1995 г. Алан Хэйл и Томас Бопп, наблюдая звездное небо, заметили возле одного из созвездий слабо светящийся объект, который оказался не известной ранее кометой. А в 1997 г. эта комета максимально приблизилась к Земле – она была от нас на расстоянии 200 000 000 км. Комета Хэйла-Боппа – одна из самых крупных в Солнечной системе. Ученые вычислили, что в ближайшие 4000 лет она не вернется.
Информацию о планетах других Галактик, о положении звезд и многих других космических объектах можно получить лишь с космического зонда, находящегося во внешней части Солнечной системы. Среди таких необходимо отметить:
- космические зонды;
- космические шатлы;
- международные космические станции.
Последние 30 лет исследовательские обитаемые станции (российские «Мир» и «Салют», американская «Скайлэб») играли важную роль в освоении космоса. Работающие на них космонавты проводили различные эксперименты. Эти исследования дали ценную информацию о жизни в космосе
Многие годы астрономы мечтали о том, чтобы поместить в космосе мощный телескоп. Ведь из космоса, где нет воздуха и пыли, звезды будут видны особенно отчетливо. В 1990 г. их мечта сбылась: шаттл вывел на орбиту телескоп Хаббл.
Космический телескоп Хаббл
Изобретения сверхмощных квантовых компьютеров в XX веке также обещают многие новые изучения, как уже известных планет и звезд, так и открытия новых далеких уголков Вселенной.
В 2021 году планируется запуск телескопа «Джеймс Уэбб». Благодаря современнейшим датчикам мы сможем ещё лучше рассмотреть первые звёзды и галактики, сформированные после Большого взрыва, понять, как они формировались, обнаружить новые экзопланеты и даже подробнее изучить нашу Солнечную систему.
За пределами видимого
Человеческий глаз видит далеко не все – например, мы не можем увидеть те излучения, которые, наряду со световыми лучами, испускают звезды и другие космические тела: рентгеновские и гамма-лучи, микро- и радиоволны.
Вместе с лучами видимого света они образуют так называемый электромагнитный спектр. Изучая невидимые части спектра с помощью специальных приборов, астрономы сделали множество открытий, в частности, обнаружили над нашей галактикой огромное облако античастиц, а также гигантские черные дыры, пожирающие все вокруг себя.
К примеру, наиболее мощные в электромагнитном спектре – рентгеновские и гамма-лучи. Их обычно излучает материя, которую поглощают черные дыры. Горячие звезды излучают большое количество ультрафиолета, тогда как микро- и радиоволны – признаки облаков холодного газа.
Недавно установлено, что внезапные выбросы гамма-лучей, причину которых долгое время не могли понять ученые, свидетельствуют о драматических событиях в далеких галактиках.
Изучая ультрафиолетовое излучение небесных тел, астрономы узнают о процессах, происходящих в недрах звезд.
Исследования, проводимые со спутников, выявляющих инфракрасное излучение, помогают ученым понять, что находится в центре Млечного Пути и других галактик.
Чтобы получить подробную картину других галактик, астрономы соединяют радиотелескопы, располагающиеся на противоположных концах Земли.
Почему нужны космические исследования
Защита от астероидов
По словам астрономов, занимающихся изучением небесных тел, возможность столкновения Земли с астероидом велика. По их расчетам, раз в 10 тыс. лет такая вероятность может настичь нашу планету.
Небесное тело в виде астероида представляет серьезную угрозу для человечества. Если предположить, что его размеры будут равны габаритам футбольного поля, тогда после столкновения возникнут необратимые последствия. Такая катастрофа приведет к гибели людей на планете. С нами произойдет то, что случилось с динозаврами — вымирание. Поэтому ученые постоянно отслеживают движение астероидов в космическом пространстве. Это позволит сбить такое тело еще на подлете к планете. Конечно, придется использовать ядерные технологии. По крайней мере, мощного заряда хватит, чтобы опасный астероид изменил свою траекторию движения.
Если с Землей столкнется какое-нибудь космическое тело диаметром в 100 м, тогда на планете образуется огромная пылевая буря и погибнут леса. Выжившие люди будут обречены на голод. Поэтому существует большая вероятность полного уничтожения человечества.
Космическое сырье
Количество ценных металлов на Земле ежегодно уменьшается. Поэтому людям в будущем рано или поздно придется добывать полезные ископаемые на других планетах. Однако для достижения поставленных задач обязательно нужно будет использовать новые технологии. С их помощью придется создать космических корабли, способные доставлять на другие планеты хотя бы роботизированное оборудование, а в обратном направлении — золото, платину, серебро и так далее.
Для обеспечения транспортировки техники и сырья на дальние расстояния не подойдут двигатели, используемые в настоящее время. Поэтому космические исследования 21 века ведутся в области ядерных технологий. Они, возможно, позволят создать действительно эффективный ядерный двигатель, с помощью которого существенно сократится время перелета между космическими телами.
Развитие медицины
Исследования в области космоса повлияли на появление большого количества медицинских препаратов, использующихся непосредственно на Земле. Особенно много было сделано открытий в области лекарств, помогающих в борьбе против рака. Был также разработан новый способ введения препарата в раковую опухоль. Кроме того, такие исследования помогли изобрести специальную механическую руку-манипулятор, которая осуществляет очень сложные действия внутри томографов.
Изучение космоса также способствовало изобретению лекарства от остеопороза. Оно не только лечит данное заболевание, но и позволяет проводить эффективную профилактику. Появлению способствовала разработка средств, благодаря которым космонавты защищаются от потери мышечной и костной массы, когда на них не действует гравитация. Тестирование изобретенных препаратов проводилось в космосе, так как человек в таких условиях теряет за один месяц примерно полтора процента костной массы.
Колонизация космического пространства
Ученые все чаще делают вывод, что рано или поздно придется заселять другие планеты. К такому заключению они приходят, потому что число людей на Земле постоянно увеличивается. При этом количество ресурсов планеты регулярно уменьшается. В то же время ухудшается экологическая обстановка. Ученые даже выполнили некоторые расчеты и пришли к выводу, что на Земле нормально может существовать максимум 16 миллиардов людей. Однако ухудшение жизни начнется уже в ближайшем будущем, когда нас с вами станет 8 млрд.
Такие прогнозы дали старт программам по изучению космоса. Научные изыскания направлены на изучение возможности межпланетных путешествий. Одной из рассматриваемых планет является Марс, на котором, предполагается, ранее уже существовала жизнь. К этому космическому телу регулярно запускаются зонды. На его поверхности уже работает марсоход. Он не только делает снимки поверхности планеты, но и изучает ее атмосферу и грунт.
Самые большие проблемы в исследовании Космоса
1. Взлет
Мощные силы сговорились против вас — в частности, гравитация. Если объект над поверхностью Земли хочет летать свободно, он должен буквально выстрелить вверх со скоростью, превышающей 43 000 км в час. Это влечет большие денежные затраты.
Например, чтобы запустить марсоход “Любопытство” на Марс, потребовалось почти $200 миллионов. А если говорить о миссии с членами экипажа, то сумма значительно увеличится.
Сэкономить деньги поможет многоразовое использование летающих кораблей. Ракеты Spacex Falcon 9 например, разрабатывались для многоразового использования, и как нам известно, уже есть попытки удачного приземления.
2. Полет
Лететь сквозь космос легко. Это — вакуум, в конце концов; ничто не замедляет вас. Но при старте ракеты возникают сложности. Чем больше масса объекта, тем больше силы нужно, чтобы переместить его, и ракеты имеют огромную массу.
Химическое ракетное топливо отлично подходит для первоначального ускорения, но драгоценный керосин сгорает за считанные минуты. Импульсное ускорение позволит долететь до Юпитера за 5-7 лет. Это чертовски много фильмов в полете. Нам нужен радикальный новый метод для развития скорости полета
3. Космический мусор
Проблема космического мусора очень реальна. “Американская Сеть Наблюдения” за космическим пространством обнаружила 17,000 объектов — каждый, размером с мяч — мчащийся вокруг Земли на скоростях больше чем 28 000 км в час; и еще почти 500,000 обломков размером менее 10 см. Адаптеры запуска, крышки для объективов, даже пятно краски могут пробить воронку в критических системах.
Щиты Уиппла — слои металла и кевлара — могут защитить от крохотных частей, но ничто не может спасти вас от целого спутника. Их насчитывается около 4000 на орбите Земли, большинство погибших в воздухе. Управление полетом помогает избежать опасных путей, но не идеально.
Вытолкнуть их из орбиты не реалистично — это займет целую миссию, чтобы избавиться лишь от одного мертвого спутника. Так что теперь все спутники будут падать с орбиты самостоятельно. Они будут выбрасывать за борт дополнительное топливо, а затем использовать ракетные ускорители или солнечный парус, чтобы направиться вниз к Земле и сгореть в атмосфере.
4. Навигация
“Сеть Открытого космоса”, антенны в Калифорнии, Австралии, и Испании, являются единственным навигационным инструментом для космоса. Все, что запускается в космос – от спутников студенческих проектов до зонда “Новые горизонты”, блуждающего через Пояс Копейра, зависит от них.
Но с большим количеством миссий, сеть становится переполненной. Так что в ближайшем будущем, НАСА работает над тем, чтобы облегчить нагрузку. Атомные часы на самих кораблях сократят время передачи в половину, позволяя вычислять расстояния с единственной передачей информации из космоса. И увеличение пропускной способности лазеров будет обрабатывать большие пакеты данных, таких как фотографии или видео-сообщения.
Но чем дальше ракеты отдаляются от Земли, тем менее надежным становится этот метод. Конечно, радиоволны путешествуют со скоростью света, но передачи в глубокий космос по-прежнему занимают несколько часов. И звезды могут указать вам направление, но они слишком далеко, чтобы указать вам, где вы находитесь.
5. Радиация
Вне безопасного кокона атмосферы Земли и магнитного поля, вас ждет космическая радиация, и это смертельно. Кроме рака, это может также вызвать катаракту и возможно болезнь Альцгеймера. Когда субатомные частицы стучат в атомы алюминия, из которого сделан корпус космического корабля, их ядра взрываются, испуская еще больше сверхбыстрых частиц, называемых вторичной радиацией.
Решение проблемы? Одно слово: пластик. Он легкий и крепкий, и он полон водородных атомов, маленькие ядра которых не производят много вторичной радиации. НАСА тестирует пластик, который сможет смягчить радиацию в космических кораблях или космических скафандрах.
6. Питание
В августе прошлого года астронавты на ISS съели несколько листьев салата, который они вырастили в космосе, впервые. Но крупномасштабное озеленение в нулевой гравитации – это сложно. Вода плавает вокруг в пузырях вместо того, чтобы сочиться через почву, поэтому, инженеры изобрели керамические трубы, чтобы направлять воду вниз к корням растений.
Но все это будет зря, если вы исчерпаете всю воду. (На ISS системе переработки мочи и воды необходим периодический ремонт, и межпланетные экипажи не смогут рассчитывать на доукомплектование новых частей.) ГМО здесь тоже могут помочь.
7. Мышцы и кости
Невесомость разрушает тело: определенные иммунные клетки не в состоянии выполнять свою работу, а эритроциты взрываются. Это способствует появлению камней в почках и делает ваше сердце ленивым.
Астронавты на ISS тренируются, чтобы бороться с атрофией мышц и потерей костной массы, но они все еще теряют массу кости в космосе, и те циклы вращения невесомости не помогают другим проблемам. Искусственная гравитация исправила бы все это. Опыты по ее созданию уже ведутся.
8.Исследование
Собаки помогли людям колонизировать Землю, но они не выжили бы на Марсе. Чтобы распространиться в новом мире, нам будет нужен новый лучший друг: робот.
Колонизация планеты требует много трудной работы, и роботы могут весь день рыть, не имея необходимость есть или дышать. Текущие прототипы — большие и громоздкие, они с трудом передвигаются по земле. Таким образом, роботы должны быть не похожи на нас, это может быть лёгкий управляемый бот с клешнями в форме экскаваторного ковша, разработанный НАСА, чтобы вырыть лед на Марсе.
Однако, если работа требует ловкости и точности, то тут не обойтись без человеческих пальцев. Сегодняшний космический скафандр разработан для невесомости, а не для пеших прогулок по экзопланете. У прототипа НАСА Z-2 есть гибкие суставы и шлем, который дает четкое представление о любой тонкой фиксации потребностей проводки.
9. Космос огромен
Самой быстрой вещью, которую когда-либо строили люди, является зонд по имени Гелиос 2. Он уже не функционирует, но если бы в космосе был звук, то вы услышали бы его крик, поскольку он до сих пор вращается вокруг солнца на скоростях больше чем 157,000 миль в час. Это почти в 100 раз быстрее, чем пуля, но даже в при такой скорости потребовалось бы приблизительно 19,000 лет, чтобы достигнуть ближайшую к нам звезду – Альфа Центавра. Во время такого длительного полета сменилось бы тысячи поколений. И вряд ли кто-то мечтает умереть от старости в космическом корабле.
Чтобы победить время нам нужна энергия – очень много энергии. Теоретически, околосветовых скоростей можно добиться с помощью энергии аннигиляции материи и антивещества, но заниматься подобным на Земле – опасно.
Намного более изящное решение взломать исходный код вселенной — с помощью физики. Теоретический двигатель Мигеля Алькубьерре сжал бы пространство-время перед вашим кораблем и расширил бы позади него, так вы могли бы перемещаться скоростью, превышающую скорость света.
Человечеству будут нужны еще несколько Эйнштейнов, работающих в местах как Большой Адронный Коллайдер, чтобы распутать все теоретические узлы и совершить прорыв в исследовании Космоса.
О важности и актуальности исследования Космоса говорит тот факт, что в 2019 году Нобелевскую премию по физике присудили за открытие экзопланет и исследования происхождения Вселенных. Награду получат трое ученых. Одна часть премии уйдет канадско-американскому физику Джеймсу Пиблсу «за теоретические открытия в области физической космологии», а другая швейцарским астрономам — Мишелю Майору и Дидье Келозу «за открытие экзопланеты, вращающейся вокруг звезды солнечного типа».
Видео
Источник