Меню

Космос наносит вред земле

10 главных опасностей, которые подстерегают человека в открытом космосе

Если вам когда-нибудь представится возможность оказаться лицом к лицу с Вселенной, выйти в открытое космическое пространство и насладиться панорамой бесконечности, примите меры предосторожности — в космосе таится немало угроз, и вот лишь некоторые из неприятностей, которые могут случиться.

1. Отсутствие воздуха

На космической станции всегда существует опасность повреждения оболочки каким-либо объектом (например, астероидом), в таком случае разница давлений «высосет» членов экипажа в открытый космос.

Внутри всегда поддерживается атмосфера и сохраняются условия для «жителей» орбиты, близкие к земным, но если появится пробоина, воздух устремится в неё, попутно захватывая оборудование и самих космонавтов. В такой ситуации шансов уцелеть мало: даже если избежать смерти от обломков, образующихся при аварии, остаётся не слишком привлекательная перспектива некоторое время дрейфовать в безвоздушном пространстве, пока не кончатся запасы кислорода.

2. Сильное опухание

Это малоприятное явление может возникнуть из-за того, что вода, составляющая около 70% человеческого тела, без воздействия атмосферного давления стремится превратиться в пар — в результате организм будто «набухает», иногда увеличиваясь в объёме почти в два раза.

Водяной пар не может вырваться наружу, повредив кожу, но, несомненно, доставит «опухшему» человеку серьёзные проблемы.

3. Солнечный свет

Многим знакомы ощущения при солнечном ожоге, «обгореть» на пляже — обычное дело. Но теперь представьте, что будет, если пляж этот будет располагаться чуть ближе к светилу: человек, находясь в открытом космосе, без озонового слоя и атмосферы, которые «фильтруют» вредное ультрафиолетовое излучение, подвергается чудовищному риску.

Последствия для организма могут быть самыми печальными: кожа подвергается сильнейшему солнечному воздействию, которое заставит её моментально «обуглиться», а бросив невооружённый взгляд на нашу звезду, можно остаться слепым — сетчатка глаз будет сожжена. И даже у выживших резко повысится риск заболевания раком кожи.

4. Гипоксия

В вакууме человек умирает от удушья, но не потому, что там нет воздуха: при отсутствии земного давления кислород в крови разрушается, и сердечно-сосудистая система начинает работать «вхолостую» — жизненно важные органы и мышцы страдают от недостатка кислорода, при этом новые порции воздуха перестают усваиваться клетками. Явление носит название гипоксия: проистекающее из неё удушье придаёт коже синеватый оттенок, а через десять секунд жизнь человека заканчивается.

5. Резкое снижение температуры тела

Известно, что выделение пота помогает регулировать температурный режим тела, ведь при испарении жидкости поглощается тепловая энергия, и организм таким образом сам себя охлаждает. В насыщенном влагой воздухе испарение происходит менее интенсивно, а в открытом космосе влаги нет вообще, поэтому процесс набирает обороты: в результате глаза, ротовая полость и дыхательные пути резко отдают большое количество энергии, и, как следствие, наступает переохлаждение.

6. Декомпрессионная болезнь

Расщепление кислорода в крови — не единственное последствие пребывания в вакууме: при отсутствии атмосферного давления молекулы газов в организме (например, соединения азота) начинают «пузыриться», закупоривая сосуды и разрушая стенки клеток. При этом возникает невыносимая боль в суставах, но главное — тромбы в кровеносной системе могут привести к инфаркту, судорогам или остановке сердца.

7. Понижение артериального давления

При всех опасностях нахождения в открытом космическом пространстве, существует и такая: неизбежная (как следует из вышеизложенных пунктов) деформация тела создаст огромную дополнительную нагрузку на мускулатуру сердца, которое будет пытаться прогнать кровь по расширившимся сосудам, поддерживая стабильное кровяное давление, но рано или поздно давление сойдёт на нет, и последует смерть. Чтобы понять принцип, представьте, насколько тяжело будет пить коктейль через соломинку, если её диаметр многократно увеличится.

8. Внезапная разгерметизация

Если пробоина в обшивке космического аппарата привела к разгерметизации, и всё живое будто гигантским пылесосом вытягивает наружу, в вакуум, не надо спешить набирать полные лёгкие воздуха, чтобы прожить на несколько драгоценных секунд дольше. Результат будет строго противоположный: разница между внешним и внутренним давлениями разорвёт лёгкие, как воздушный шарик, — когда вам, вдруг, случится вылетать через дыру в оболочке космического судна, постарайтесь перед этим хорошенько выдохнуть.

9. Кипящая кровь

Почему вода в горах закипает при температуре ниже 100°C? Дело в том, что чем ниже окружающее давление, тем легче заставить молекулы двигаться, и меньше тепловой энергии потребуется, чтобы превратить плотную жидкость в пар. «Прогулка» в безвоздушном пространстве заставит вас «вскипеть», так как тут действует ровно такой же принцип: давление в вакууме практически равно нулю, и температуры тела хватит, чтобы кровь в сосудах, в буквальном смысле, закипела.

10. Клеточные мутации

Находясь в открытом космосе, помните, что при всех очевидных рисках, вроде взрыва лёгких или гипоксии, есть опасность, не столь ярко выраженная, но оттого не менее реальная: организм будут каждое мгновение «прошивать» субатомные частицы. Незримые глазу заряженные протоны, а также рентгеновские и гамма-лучи действуют на клеточном уровне и вызывают отклонения в строении ДНК. В итоге вряд ли получится обрести сверх-способности — более вероятна отложенная на годы смерть от радиации или онкологических заболеваний.

Источник

Космический мусор: чем он опасен для жителей Земли

Что такое космический мусор

Космический мусор представляет собой твердые отходы космической деятельности. Сюда относятся неработоспособные спутники, запущенные человеком за 60 лет освоения космоса, вторая и третья ступени ракета-носителя (первая обычно падает в Тихий океан), разгонные блоки и фрагменты спутников после взрыва или столкновений, например, фрагменты обшивки — так появляется космический мусор.

Читайте также:  Значение освоения космоса нашей страной

Ученые подсчитали, что сейчас в космосе находится почти 128 млн кусков космического мусора размером более 1 мм и 34 тыс. частиц размером более 10 см. Все, что меньше 1 мм подсчитать крайне трудно, некоторые ученые говорят о триллионах таких частиц. Около 3 тыс. спутников вышли из строя из-за мусора и сами превратились в космический мусор.

Астрономы могут отследить только крупные фрагменты, так как скорость частиц может доходить до 14 км/с (зависит от орбиты). Россия и США сейчас наблюдают за 23 тыс. космических объектов размером от 10 см, каталогизировано же и того меньше — 17 тыс. При этом 95% каталога космических объектов составляет космический мусор.

Проблемы и угрозы

Степень опасности космического мусора определяется в основном тремя факторами:

  1. как долго космический мусор находится на орбите;
  2. какова скорость движения;
  3. велика ли сложность утилизации космического мусора.

Главная проблема мусорного кризиса в космосе — выход из строя работающих спутников при столкновении с космическим мусором. Из-за больших скоростей опасность представляют даже частицы менее 1 см, они могут пробить противометеоритную защиту орбитальной станции. При столкновении с объектом более 10 см любой космический аппарат или станция гарантированно уничтожаются.

В мае 2016 года в Международную космическую станцию (МКС) влетела частица космического мусора размером в сотые доли миллиметра и оставила на МКС скол диаметром около 7 мм. Чтобы не допустить более разрушительных последствий МКС приходится регулярно менять свою орбиту, уворачиваясь от мусора.

Хоть мелкий мусор и не влечет за собой катастрофических последствий, однако его опасность заключается в гигантском объеме, неконтролируемом распределении в пространстве, огромной скорости и абсолютной непредсказуемости столкновений.

Сейчас около 99% потенциально опасных объектов вовсе не контролируется из-за их малых размеров и огромных скоростей.

Что такое синдром Кесслера и при чем он здесь

Ученые предполагают, что в какой-то момент мы больше не сможем выводить новые спутники на орбиты, так как они будут полностью заняты космическим мусором. Это может произойти из-за каскадного эффекта, который называется синдромом Кесслера:

стремительно растущий объем космического мусора будет производить другой мусор, а он, в свою очередь, по цепной реакции — новый мусор.

Общий характер каскадного эффекта такой же, как и у ядерной цепной реакции. Таким образом орбиты будут заняты, и человек больше не сможет запускать летательные аппараты по причине неконтролируемых столкновений.

Вероятность столкновений на любой орбите растет приблизительно пропорционально квадрату количества космических объектов. Есть ученые, которые считают, что каскадный эффект уже начался в некоторых орбитальных областях и для некоторых классов космического мусора (на высотах 900–1000 км и 1500 км).

Наиль Бахтигараев, старший научный сотрудник Института астрономии РАН:

«Где-то десять лет назад поднялся шум из-за эффекта Кесслера. Считалось, что он вот-вот начнется, но затем его отложили. Когда он все-таки начнется, зависит от уровня развития науки и технологий. Но даже если мы будем предпринимать технические мероприятия по уничтожению мусора, то этот момент все равно настанет. Сейчас мы лишь замедляем и отдаляем его»

10 февраля 2009 года на расстоянии 790 км над уровнем моря столкнулись два спутника: американский Iridium-33 и российский «Космос-2251». В результате летательные аппараты разлетелись на 600 осколков размером более 5 см и несколько тысяч более мелких.

Впрочем, на сегодняшний день столкновения работающих летательных аппаратов с космическим мусором на орбите происходят довольно редко благодаря работающим системам слежения. Существует другая проблема — взрывы старых спутников, на борту которых осталось топливо и отработанные аккумуляторы. Под различного рода воздействием они могут повреждать работающие спутники сильнее, чем обычные столкновения.

Утилизация космического мусора

Говорить о том, что космический мусор станет серьезной проблемой, начали еще в 1960-е годы, на заре освоения космоса. Но до сих пор не придумали реальной возможности массово удалять мусор с околоземных орбит. «Существуют программы по удалению космического мусора, но они единичные и не решают проблему. Удалить можно только крупный мусор, то есть более 20 см, с объектами менее 10 см возникают большие сложности», — говорит Бахтигараев из Института астрономии РАН.

Так как существующие технологии не способны избавить космос от мусора, то космические агентства начали уделять внимание профилактике. Для новых аппаратов предъявляют стандарты, например, на борту космических аппаратов закладывают ресурс, чтобы они могли уходить от столкновений с мусором. Также их снабжают броней, которая защищает космического мусора, но только от мелкого.

На сегодняшний день работающей технологией по утилизации космического мусора является увод старых спутников на соседние орбиты. Это можно сделать с помощью аппаратов-захватчиков, которые буксируют мусор на орбиты для захоронения. Также отработанные спутники могут сами уходить со своих мест на остатках топлива. Но массово эти методы не применяются.

Считается, что космический мусор не падает на Землю, но это не совсем так. Для отработанных крупных спутников и грузовых кораблей на Земле в Тихом океане существует свое кладбище, где их затапливают, так как они не сгорают в атмосфере. Это место расположено в южной части Тихого океана около точки Немо, самого удаленного от суши места на Земле. Над этим местом запрещено летать и проплывать кораблям. Так проблема космического мусора превращается в проблему земного мусора. С 1971 по 2016 года там захоронили минимум 260 аппаратов.

Читайте также:  Один рубль 1983 20 лет космос

Сейчас перед астрофизиками стоит задача, как избавиться от мусора на геостационарной орбите или поясе Кларка. Она находится непосредственно над экватором Земли на расстоянии 35 786 км. Эта орбита очень привлекательна для запуска спутников, так как на ней летательные аппараты требуют меньше топлива и охватывают значительно больше поверхности Земли, чем на других орбитах. Однако количество точек стояния спутников на геостационарной орбите ограничено — их около 180. Помимо очистки геостационарной орбиты, важное значение имеет удаление космического мусора в окрестностях МКС, так как станция является дорогостоящей и очень уязвимой.

Космический мусор: карты и модели

Чтобы убедиться, что наша планета окружена мусором, не надо лететь в космос. Ученые смоделировали то, как выглядят околоземные орбиты. Один из таких сайтов — «Гид в мире космоса». Карта показывает соотношение работающих спутников к тем, которые уже стали мусором.

Видео от Европейского космического агентства демонстрирует, насколько много мусора находится вокруг Земли. В начале модель показывает обломки больше 1 м, а в самом конце — количество космических объектов от 1 мм:

Источник

Угроза из космоса. Какому излучению подвергаются космонавты и наша планета?

Космическое излучение является ключевым фактором безопасности космонавтов, отправляющихся на Луну. Исследователи и инженеры изучают различные методы и технологии для снижения различных типов излучения во время космических путешествий. Рассказываем, каким опасностям подвергаются астронавты в космосе и как НАСА пытается их защищать для будущих исследований.

За последнее время тема освоения и колонизации Марса вышла из ряда научной фантастики. США, Европа, Россия и впервые Китай и ОАЭ запускают все новые миссии и космические программы не только по освоению космоса, но и особое внимание уделяя Марсу. Кроме того, НАСА планирует «вернуть астронавтов на Луну» в программе Artemis. Все это — не только захватывающе и завораживающе, но и пугающе. На Земле мы в относительной безопасности, с нашей атмосферой и достаточным расстоянием от Солнца. Но что происходит с людьми, когда они покидают безопасную зону?

Им угрожает радиация.

Радиация из космоса

В первую очередь для людей опасны частицы энергии, которые вылетают из Солнца в результате гигантских солнечных извержений.

В дополнение к вспышкам, огромные облака — выбросы корональной массы — содержащие миллиард тонн солнечного материала, иногда взрываются на поверхности Солнца. Все чаще ученые считают, что выбросы корональной массы играют доминирующую роль в управлении самым мощным излучением Солнца: солнечными энергетическими частицами или SEP (Solar energetic particles).

SEP — это частицы (по большей части протоны, а также электроны и ионы), летящие с такой высокой скоростью, что некоторые из них достигают Земли, находящейся на расстоянии 150 млн км, менее чем за час.

Излучение — это энергия, заключенная в электромагнитные волны или переносимая частицами. Энергия передается, когда волна или частица сталкиваются с чем-то еще, например, с космонавтом или компонентом космического корабля. SEP опасны, потому что они могут проходить через кожу, выделяя энергию и разрушая клетки или ДНК на своем пути. Такие повреждения могут увеличить риск рака в более позднем возрасте или, в крайних случаях, вызвать острую лучевую болезнь в краткосрочной перспективе.

Почему на Земле люди в безопасности?

На Земле люди застрахованы от этого вреда. Но почему?

Защитный «магнитный пузырь» Земли — магнитосфера — отклоняет большинство солнечных частиц. Атмосфера также подавляет любые частицы, которые проникают сквозь нее. Международная космическая станция движется по низкой околоземной орбите, находясь под защитой Земли, а корпус станции также помогает защитить членов экипажа от радиации.

Земля находится в центре огромного голубого пузыря в форме кометы.

Магнитный пузырь Земли, называемый магнитосферой, показан синим цветом. Магнитосфера обеспечивает естественную защиту от космического излучения, отклоняя большинство заряженных солнечных частиц от Земли.

Предоставлено: Космический центр Андёя/Тронд Абрахамсен

Но за пределами магнитной досягаемости Земли человеческие исследователи могут столкнуться с резкой радиацией космоса.

Стратегия защиты космонавтов

Основная стратегия аналитической группы при работе в космосе — использовать любую доступную массу на корабле. Они перераспределяют ее таким образом, чтобы заполнить области, которые защищены недостаточно, и направляют членов экипажа к хорошо защищенным областям.

Чем больше масса между экипажем и излучением, тем больше вероятность того, что опасные частицы передадут свою энергию, прежде чем достигнут экипажа. На Луне астронавты могут насыпать лунный грунт или реголит над своими убежищами, используя в своих интересах естественные защитные материалы окружающей среды. Но что касается конструкции космического корабля, то полагаться на его габариты для защиты вскоре становится дорого, поскольку для запуска большей массы требуется больше топлива.

Команда Джонсона работает над разработкой методов экранирования без добавления дополнительных материалов. У астронавтов не будет возможности летать на «специальной радиационной защите». Законы распределения полезного груза на корабле таковы, что каждый предмет, с которым летит команда астронавтов, должна быть многоцелевым.

Для космического корабля Orion они разработали план для астронавтов по строительству временного убежища из имеющихся материалов под рукой, в том числе единиц хранения, уже находящихся на борту, или запасов еды и воды. Если на Солнце разразится еще один шторм, такой же сильный, как в эпоху миссий Аполлона, экипаж «Ориона» будет в целости и сохранности.

Читайте также:  Внутри космос люблю тебя

Другие команды в НАСА решают проблему радиации с помощью творческих решений, разрабатывая такие технологии, как носимые жилеты и устройства, увеличивающие массу, а также электрически заряженные поверхности, которые отклоняют радиацию.

Кроме того, Опытный дизайнер космических скафандров Эми Росс в Космическом центре имени Джонсона в НАСА в Хьюстоне разрабатывает новые костюмы для Луны и Марса. Именно образцы ее прототипов скафандра отправились на Марс в миссии «Настойчивость» для проверки и анализа.

Как защититься от Солнца? Основные проблемы

Чтобы защитить астронавтов от бурь с частицами солнечной энергии, необходимо знать, когда такая буря произойдет. Но потоки частиц непостоянны и их трудно предсказать. Природа турбулентных извержений Солнца еще полностью не изучена.

В идеале вы могли бы посмотреть на активную область на Солнце, увидеть, как она развивается, и попытаться предсказать, когда произойдет извержение. Проблема в том, что даже если бы вы могли спрогнозировать вспышки и выбросы корональной массы, только небольшая часть на самом деле порождает частицы, опасные для астронавтов.

Ричардсон

И если SPE действительно появятся, трудно предсказать, куда они пойдут. Силовые линии магнитного поля — это магистраль для заряженных частиц, но когда Солнце вращается, дороги превращаются в спирали. Некоторые частицы выбиваются из-за перегибов силовых линий. В результате они могут распространяться по всей Солнечной системе в виде огромного туманного облака.

Модели, позволяющие предсказать, когда появятся SEP, находятся на ранних стадиях разработки. Одна из них использует прибытие более легких и быстрых электронов для прогнозирования потока более тяжелых протонов, которые последуют за ним, которые более опасны.

Ученые полагаются на гелиофизические миссии НАСА для развития моделей прогнозирования космической погоды. Это помогает расположить космические корабли в разных точках обзора между Солнцем и Землей. Запущенный в 2018 году солнечный зонд НАСА Parker Solar Probe летит ближе к Солнцу, чем любой другой космический корабль до него. Космический аппарат будет отслеживать SEP вблизи их источника. Это и станет ключом к разгадке того, как солнечные извержения ускоряют частицы.

Время тоже имеет значение. Солнце проходит через 11-летние циклы высокой и низкой активности. Во время солнечного максимума Солнце покрыто областями с высоким магнитным напряжением, которые готовы к извержению. Во время солнечного минимума, когда солнечных пятен мало или совсем нет, извержения редки.

В то время как ученые продолжают совершенствовать свои модели, гелиофизические космические аппараты НАСА уже сейчас обеспечивают наблюдения, чтобы дать астронавтам всю полноту картины, понимание и прогнозирование опасностей. И, главное, разрешение на выполнение миссий. Если на Солнце нет активных пятен, ученые могут с уверенностью сказать, что солнечного шквала не будет.

Еще одна опасность. Излучение из соседних галактик

Второй вид космического излучения распространяется даже дальше, чем частицы солнечной энергии. Галактические космические лучи — частицы давно ушедших взорвавшихся звезд в другом месте Млечного пути — постоянно бомбардируют Солнечную систему со скоростью, близкой к световой. Если солнечные энергетические частицы — это внезапный ливень, то галактические космические лучи больше похожи на устойчивую морось. Но моросящий дождь тоже может доставлять неудобства.

Солнечная система находится в центре двух больших пурпурных пузырей, представляющих гелиосферу. Золотые полосы отражаются повсюду.

Это изображение показывает Солнечную систему и магнитный пузырь Солнца, гелиосферу который простирается далеко за его пределы. Яркие полосы представляют собой космические лучи. Во время солнечного максимума, когда гелиосфера усиливается, она блокирует больше космических лучей.

Центр космических полетов имени Годдарда НАСА/Лаборатория концептуальных изображений

Космические лучи имеют тенденцию быть более мощными, чем даже самые энергичные солнечные частицы. Тот же космический корабль, который защитит команду от частиц солнечной энергии, не сможет удерживать космические лучи на расстоянии, поэтому космические лучи представляют серьезную проблему, особенно для длительных миссий, таких как путешествие на Марс, которое займет от шести до 10 месяцев.

Хотя SEP сложно предсказать, галактические космические лучи приходят с постоянной скоростью. За одну секунду около 90 космических лучей попадают в космическую точку размером с мяч для гольфа. Между тем, во время ливня SEP могло быть еще 1 000 частиц, проникающих через это пространство размером с мяч для гольфа. Эта скорость помогает определить пределы излучения и продолжительность миссии. В этом состоит ведущая стратегия НАСА по ограничению воздействия космических лучей. НАСА отслеживает индивидуальные дозы астронавтов, чтобы гарантировать, что они не подвергаются излишнему излучению.

Космические лучи состоят из тяжелых элементов, таких как гелий, кислород или железо. Массивные частицы разбивают атомы, когда они сталкиваются с чем-то, будь то космонавт или толстые металлические стенки космического корабля. Удар вызывает поток дополнительных частиц — вторичное излучение, что еще больше усугубляет опасность космических лучей.

Воздействие космических лучей также связано с солнечным циклом. В относительном штиле солнечного минимума космические лучи легко проникают в магнитное поле Солнца. Но во время солнечного максимума магнитный пузырь Солнца усиливается с увеличением солнечной активности, отталкивая некоторых незваных гостей из галактик. Как ни странно, вредное излучение помогает нейтрализовать другое опасное излучение.

Источник

Adblock
detector