Лунные кратеры и их происхождение
Луна — второе по видимой величине тело на небосводе нашей планеты. Наблюдения за ним ведутся со времен глубокой древности.
Невооруженным глазом видна неоднородность поверхности естественного спутника Земли, но кратеры на Луне были обнаружены только после изобретения телескопа.
Что такое лунный кратер
Понятие «кратер» было введено итальянским астрономом Галилео Галилеем. В 1609 г. ученый сконструировал первый прибор для астрономических исследований и, наблюдая в него за Луной, выяснил, что ее поверхность не представляет собой гладкую сферу, а имеет сложный рельеф с множеством углублений разного размера.
Он назвал их кратерами, однако объяснить природу этого явления не смог. Само слово заимствовано из греческого языка — так в Элладе назывался сосуд, предназначенный для смешивания вина и воды.
Сейчас в астрономии лунными кратерами (ЛК) называются чашеобразные углубления на поверхности планеты, имеющие форму правильного круга. Их диаметр варьируется от нескольких сантиметров до сотен километров, отличаются не только размеры впадин, но и их глубина.
По внешнему краю ЛК ограничены кольцевыми валами, состоящими из горных пород, отброшенных во время метеоритного удара, но не разлетевшихся далеко. Дно у кратеров практически всегда плоское, находится ниже уровня лунной поверхности, а внешняя часть вала возвышается над ней.
Кратеры на Луне и причина их образования
Луна — небесное тело, лишенное жизни и не имеющее атмосферы. Видимыми деталями его рельефа являются т. н. моря и океаны — сухие обширные низины, покрытые застывшей лавой. Возвышенности, расположенные между ними, называются материками. При ближайшем рассмотрении обнаруживается, что вся поверхность лунных морей и материков усеяна кратерными образованиями.
Причины их возникновения описываются двумя теориями:
Из-за отсутствия на Луне атмосферы, воды и активных геологических процессов даже самые древние ЛК не подверглись каким-либо изменениям за весь период своего существования. Они пребывают в том же состоянии, что и в первое время после своего возникновения.
Ударная теория
Была выдвинута в 1824 г. Францем фон Груйтуйзеном, предположившим, что причиной формирования ЛК является бомбардировка поверхности Луны разными объектами из космоса.
Долгое время эта теория подвергалась сомнению. Считалось, что следы от упавших под косым углом на Луну космических тел должны иметь эллиптическую форму, тогда как все кратеры в основном круглые.
В начале XX в. ученый из Новой Зеландии А. Джиффорд доказал, что объекты, двигающиеся с космической скоростью, при столкновении с твердой поверхностью по большей части испаряются, а угол их падения не влияет на форму углубления, образовавшегося от удара.
Согласно представлениям, принятым в астрономии сейчас, большинство ЛК относится к ударному типу.
Теория внутренней активности
Эту гипотезу выдвинул Иоганн Шретер в конце XVIII в.
В ее основу легло предположение о настолько мощной вулканической активности на Луне, что извержения вулканов должны были сопровождаться взрывами.
При этом постройка кратеров получала форму не правильного конуса, а круглой воронки с возвышающимися краями.
Подобные вулканы — не редкость на Земле и других планетах Солнечной системы. Они внешне похожи на ЛК и называются кальдерами. К вулканическому типу относится лишь небольшая часть кратеров на Луне.
Формирование и ударных, и вулканических кратеров отражается не только на рельефных изменениях. Оно сопровождается сверхвысокими температурами и давлением, что приводит к глубоким физическим и химическим преобразованиям вещества, составляющего поверхность космического тела, и образованию новых минералов — т. н. импактитов.
Морфологические признаки кратеров
После визуального анализа множества снимков, сделанных при помощи мощных телескопов и космических аппаратов, было выделено 9 морфологических признаков ЛК. По каждому из них кратеру присваивается цифровой или буквенный индекс.
- Четкость очертаний вала, зависящая от степени его сохранности.
- Особенности строения внутренних склонов — наличие террас и/или обрушений на них.
- Характер и размеры внешнего вала.
- Наличие образований на дне.
- Наличие цепочек и радиальных трещин.
- Характер донной поверхности.
- Присутствие на дне лавы.
- Наличие и протяженность лучевых систем.
- Вид подстилающей поверхности — море, материк или переходная зона.
Вал ЛК может быть четко выраженным или неясным, как сохранившим свою целостность, так и полностью разрушенным. Стены кратерной чаши иногда имеют ровную поверхность, но чаще разграничены одним или несколькими уступами.
Нередко на них образуются небольшие или обширные зоны обрушений, а также цепочки и трещины разной протяженности.
Встречаются ЛК с гладким или неровным дном. На нем могут находиться один пик, расположенный в центре, или множественные горки и хребты, разбросанные по всей площади.
Иногда на дне обнаруживаются вкрапления застывшей лавы, но бывает, что донная поверхность покрыта ею полностью. Лучевые системы, окружающие ЛК, могут распространяться на многие километры во все стороны от центра кратера.
Определение морфологических признаков ЛК, расположенных на обратной стороне естественного спутника Земли, затрудняется качеством полученных снимков и сильной затененностью областей, прилегающих к терминатору — линии светораздела между освещенной и темной частью Луны.
Классификация кратеров
Лейф Андерссон и Чарльз Вуд в 1978 г. изучили снимки более 11 тыс. кратеров с поперечниками 2 км и более и установили, что при таком количестве все же большинство из них похожи друг на друга.
Ученые классифицировали пять видов кратерных чаш, к которым можно отнести 99% всех ЛК. Предложенное ими разделение кратеров получило название от аббревиатуры лаборатории, где проводились исследования.
- Аль-Баттани (ALC).
- Био (BIO).
- Созигена (SOS).
- Триснеккера (TRI).
- Тихо (TYC).
Типы ALC и BIO считаются простыми. К ним относятся почти все ЛК, диаметры которых меньше 10 км. Они выглядят как классическая чаша с гладкими боковыми стенками, но у BIO дно меньше и более плоское, чем у ALC.
Впадины типа SOS отличаются широким плоским дном и отсутствием террас и центральных пиков. Их своеобразность пока не нашла объяснения — не ясно, имели они такое строение изначально или приняли форму бассейна в результате вторичных метеоритных ударов.
ЛК диаметром от 10 до 50 км относятся к TRI-типу. Для них характерно частичное обрушение внутренних стен чаши. Иногда встречаются экземпляры с пиком в центральной части дна.
Практически все ЛК, размеры которых превосходят 50 км в поперечнике, подобны кратеру Тихо, т. е. относятся к типу TYC. Их дно расположено глубоко, часто имеет в центре массивный пик, а стены состоят из террас, переходящих одна в другую.
Если диаметр кратерной чаши превышает 200-300 км, то центральных пиков не наблюдается и кратеры становятся бассейнами.
Более сложное строение TRI и TYC обусловлено увеличивающейся энергией, которая выделяется при столкновении тел, имеющих большие размеры.
Крупнейшие кратеры на Луне
Сведения о самых больших кратерах видимой стороны Луны приведены в таблице:
Название | Диаметр, км | Глубина, км | Возраст, млрд лет |
Байи | 300 | 4,13 | 3,85 |
Шиккард | 227 | 1,5 | 3,65 |
Клавий | 225 | 3,5 | 3,9 |
Гумбольдт | 207 | 5,16 | 3,5 |
Жансен | 190 | 2,9 | 4 |
Петавий | 184 | 3,33 | 3,8 |
Маджини | 156 | 5,05 | 4,3 |
Венделин | 147 | 2,6 | 4 |
Крупнейший кратер Луны расположен на ее обратной стороне и назван в честь датского ученого Эйнара Герцшпрунга. Чаша образования окольцована несколькими валами, диаметр составляет 591 км.
Не видимы с Земли большие чаши Тихо и Коперника. Первый имеет хорошо развитую лучевую систему, второй отличается ровным дном и высотой вала 2,2 км.
Источник
Лунные кратеры: почему они появились и какие из них самые большие
Кратеры на Луне – явление удивительное для человеческого глаза. Как только у обитателей Земли появилась возможность различать крупнейшие лунные кратеры помощью простейших телескопов, сразу же последовали попытки объяснить их появление. Кстати, первым обнаружил лунные кратеры Галилео Галилей в 1609 г., да и само название «кратер» тоже дано Галилеем – за сходство пологих “воронок” кратеров на спутнике Земли, широкогорлым древнегреческим сосудам прошлого, называемым кратерами.
Лунная поверхность сплошь покрыта кратерами – разрушить их в условиях отсутствия атмосферы и геологической активности могут…. только вновь падающие метеориты создающие новые кратеры
Существовало две основных гипотезы происхождения лунных кратеров – метеоритная и вулканическая. Вплоть до 20-го века предпочтение отдавалось вулканической гипотезе, так как по мнению ученых того времени метеориты должны были оставлять форму эллипса, ведь они падают на поверхность небесного тела под углом.
Однако новозеландский ученый Джиффорд в 1924 году впервые предоставил качественное описание падение и удара метеорита о поверхность планеты, двигающегося с космической скоростью. Из этого описания следовало, что большая часть метеорита при таком ударе испаряется, а форма кратера от угла падения не зависит.
Что представляет собой лунный кратер?
Лунным кратером называется чашеобразное углубление на поверхности Луны, окруженное кольцевидным приподнятым валом и имеющее сравнительно плоское дно. Большинство лунных кратеров в соответствии с действующими современными представлениями представляют кратеры ударного типа. Лишь незначительная часть из них до этого момента относится к вулканическим кальдерам.
Сегодня на поверхности Луны можно свидетельства бомбардировки ее метеоритами, кометами и астероидами. Существует примерно полумиллиона кратеров, которые имеют размер свыше 1 км. Из-за того, что на Луне нет атмосферы, воды, а также не происходили значительные геологические процессы, кратеры оказались “законсервированы” и не подвергались существенным изменениям. Поэтому даже древние кратеры находятся на поверхности Луны в практически нетронутом состоянии.
Кратеров на Луне так много, что существует даже специальная классификация лунных кратеров (создана в 1978 г. Чарльзом Вудом и Лейфом Андерссоном), включающая 5 типов.
Классификация лунных кратеров
Тип | Особенности | Примерный размер | Пример |
ALC | Классический круглый кратер, представляющий собой сужающийся конус с гладкими стенками (например кратер Аль-Баттани C) | 0-10 км | |
BIO | Более крупный кратер типа ALC, дно которого представляет собой уже не острие конуса, а плоскую площадку (см. кратер Био). | 10-15 км | |
SOS | Этот тип кратеров напоминает суповую тарелку с ровными, правильными стенками, и имеет широкое, ровное плоское дно (см. кратер Созиген). | 15-25 км | |
TRI | В отличие от предыдущего вида имеет в середине имеется центральный пик (у относительно крупных кратеров этого вида, больше 25 км в диаметре), а края обычно неровные и частично обрушившиеся (см. кратер Триснеккер) | 15-50 км | |
TYC | Крупные кратеры предыдущего вида, с хорошо видимым центральным пиком и террасовидным (ступенчатым) краем (см. кратер Тихо) | больше 50 км |
Эту классификацию можно дополнить ещё двумя типами лунных образований, правда они больше “неофициальные”.
Лунные бассейны | Огромные кратеры типа TYC, утратившие центральный пик (см. бассейн Южный полюс-Эйткен). По размерам эти кратеры приближаются к лунным морям. | больше 200 км |
Талассоиды | В общем-то тоже, что и бассейны или даже небольшие лунные моря, но имеющие светлое дно, не залитое тёмной лавой (см. кратер Королев) | больше 200 км |
Морфологические признаки кратеров
К морфологическим признакам кратеров можно отнести:
- Кратер окружает местность с породами, которые выброшены при ударе (импакте). Как правило, они светлее старых пород вследствие меньшего воздействия солнечной радиации.
- Система радиальных лучей, образованных ударными выбросами и отходящих от кратера, в некоторых случаях простираются на весьма большое расстояние.
- Внешний вал с породами, которые были выброшены при ударе, однако упавшие около кратера.
- Центральный пик, который характерен для кратеров, его диаметр превышает 26 км, данный процесс его появления подобен образованию капли отдачи во время падения в воду небольшого предмета.
- Дно чаши кратера.
- Внутренний склон.
Морфологические признаки кратера во многом связаны с его размером. Стандартный небольшой кратер в 5 км включает острый внешний вал по высоте до 1000 м, а также дно чаши, находящееся на уровне ниже 100 м местности, которая окружает ее.
Кратерам, которые имеют диаметр выше 26 км, свойственен центральный пик. Крупные кратеры диаметром примерно 100 км обладают внешним валом возвышения 1000 — 5000 м.
Светлые лучи расходящиеся от лунных кратеров это мелкие частицы метеорита «сплющившегося» о поверхность Луны при ударе. Факт остается фактом – частицы разлетаются не «облачком», а несколькими мощными струями
Как даются названия лунным кратерам
На Луне множество кратеров и все они имеют свои названия. Откуда берутся эти названия и можно ли переназвать один из существующих кратеров в свою честь? Можно, хотя это будет и не просто.
Присвоением официального названия кратера Международный астрономический союз (МАС) утвержденный в 1919 году. Несмотря на то, что за минувшие к тому времени 360 лет всем более-менее крупным кратерам уже успели дать название их первооткрыватели, для всех новых объектов обнаруженных с того времени уже действовали вполне четкие праивла именования.
- Кратеры на Луне получают своё название в честь умерших выдающихся учёных, инженеров и исследователей, внёсших значительный, фундаментальный вклад в своей области.
- Кратеры вокруг Моря Москвы названы в честь погибших советских космонавтов, а кратеры вокруг кратера Аполлон названы в честь погибших американских астронавтов. Это правило может быть распространено и для других космических держав, которые потеряют своих космонавтов.
- Для маленьких кратеров используются только имена, без фамилий (например кратер Борис). Как правило, официальные названия не присваиваются кратерам размером менее 100 метров, кроме случаев, когда такие кратеры представляют исключительный научный интерес.
Список 30 крупнейших кратеров на Луне
Название по-русски | Международное название | Диаметр кратера | В честь чего/кого назван | Год утверждения названия МАС |
Аполлон | Apollo | 524 км | В честь американской лунной программы Аполлон | 1970 |
Байи | Bailly | 301 км | В честь астронома Жан Сильвен Байи (1736—1793) | 1935 |
Белькович | Bel’kovich | 215 км | Астроном, исследователь Луны Игорь Владимирович Белькович (1904—1949) | 1964 |
Биркхоф | Birkhoff | 330 км | Математик Джордж Биркхоф (1884—1944) | 1970 |
Ван де Грааф | Van de Graaff | 240 км | Физик Роберт ван де Грааф (1901—1967) | 1970 |
Гагарин | Gagarin | 262 км | Космонавт Юрий Алексеевич Гагарин (1934—1968) | 1970 |
Галуа | Galois | 232 км | Математик Эварист Галуа (1811—1832) | 1970 |
Герцшпрунг | Hertzsprung | 536 км | Астроном Эйнар Герцшпрунг (1873—1967) | 1970 |
Д’Аламбер | D’Alembert | 234 км | Философ, математик Жан Лерон Д’Аламбер (1717—1783) | 1970 |
Деландр | Deslandres | 227 км | Астроном Анри Александр Деландр (1853—1948) | 1948 |
Жансен | Janssen | 201 км | Астроном Пьер Жюль Сезар Жансен (1824—1907) | 1935 |
Кемпбелл | Campbell | 222 км | Астроном Леон Кэмпбелл (1881—1951) | 1970 |
Кемпбелл | Campbell | 222 км | Астроном Уильям Кэмпбелл (1862—1938) | 1970 |
Клавий | Clavius | 231 км | Математик Христофор Клавий (1537—1612) | 1935 |
Королёв | Korolev | 423 км | Конструктор Сергей Павлович Королёв (1907—1966) | 1970 |
Ландау | Landau | 218 км | Физик Лев Давидович Ландау (1908—1968) | 1970 |
Лейбниц | Leibnitz | 237 км | Философ Готфрид Вильгельм Лейбниц (1646—1716) | 1970 |
Лоренц | Lorentz | 378 км | Физик Хендрик Антон Лоренц (1853—1928) | 1970 |
Менделеев | Mendeleev | 325 км | Химик, физик Дмитрий Иванович Менделеев (1834—1907) | 1961 |
Милн | Milne | 260 км | Математик Эдуард Артур Милн (1896—1950) | 1970 |
Оппенгеймер | Oppenheimer | 201 км | Физик Роберт Оппенгеймер (1904—1967) | 1970 |
Пастер | Pasteur | 233 км | Химик Луи Пастер (1822—1895) | 1961 |
Планк | Planck | 319 км | Физик Макс Планк (1858—1947) | 1970 |
Почобут | Poczobutt | 212 км | Астроном Мартин Почобут-Одляницкий (1728—1810) | 1979 |
Пуанкаре | Poincaré | 346 км | Математик Анри Пуанкаре (1854—1912) | 1970 |
Ферми | Fermi | 241 км | Физик Энрико Ферми (1901—1954) | 1970 |
Харкеби | Harkhebi | 337 км | Астроном Харкеби (IV век до н. э.) | 1979 |
Шварцшильд | Schwarzschild | 211 км | Астроном Карл Шварцшильд (1873—1916) | 1970 |
Шиккард | Schickard | 212 км | Астроном, математик Вильгельм Шиккард (1592—1635) | 1935 |
Шрёдингер | Schrödinger | 316 км | Физик Эрвин Шрёдингер (1887—1961) | 1970 |
Карта высот обратной стороны Луны, в районе Южного полюса. Вот это синее пятно – это и есть бассейн Южный полюс-Эйткен. Попади такой «камешек» в Землю, вымерли бы не только динозавры, а всё до последней бактерии
И все же самый невероятный “кратер” на Луне остается за пределами этого списка и называется бассейн Южный полюс-Эйткен. Дело в том, что назвать этот громадный шрам на Луне кратером – просто не поворачивается язык. Бассейн Южный полюс-Эйткен – это след гигантского столкновения произошедшего примерно 4 миллиарда лет назад.
Его диаметр – 2400 х 2500 км, а глубина составляет 13 км, что делает этот “кратер” одним из крупнейших в Солнечной системе. Трудно даже представить какого размера было тело “чиркнувшее” по Луне под углом примерно в 30 градусов, однако подсчитано, что такой же удар, но нанесенный по поверхности вертикально, буквально вспорол бы внутренности спутника нашей планеты.
Источник