Меню

Критическая плотность материи вселенной

Критическая плотность материи вселенной

§ 7. Будущее расширяющейся Вселенной. Критическая плотность

Расширение Вселенной протекает с замедлением, и для будущего есть две возможности.

Замедление, как мы видели в § 6, пропорционально плотности вещества во Вселенной. С расширением плотность падает, уменьшается замедление. Возможна ситуация, когда при сегодняшней скорости расширения плотность вещества достаточно мала и замедление мало. Тогда расширение будет протекать неограниченно. На рис. 9,а показан такой случай. Расстояние между любой парой галактик неограниченно возрастает.


Рис. 9. а) Зависимость расстояния между галактиками от времени для плотности вещества во Вселенной меньше критической. Вселенная расширяется неограниченно, б) Такая же зависимость для плотности вещества больше критической Расширение Вселенной сменяется сжатием

Но возможно, что плотность достаточно велика, а значит, велико замедление расширения. В результате расширение прекращается и сменяется сжатием. Изменение расстояния между галактиками в этом случае показано на рис. 9, б.

Ситуация здесь полностью аналогична той, когда ракета, разогнанная до определенной скорости, должна покинуть небесное гело. Так, скорость в 12 км /сек достаточна, чтобы покинуть Землю и улететь в космос, ибо эта скорость больше «второй космической» скорости для Земли. Однако эта скорость недостаточна для тою, чтобы покинуть поверхность Юпитера, где «вторая космическая» скорость 61 км/сек. На поверхности Юпитера тело, брошенное со скоростью 12 км /сек вверх, после подъема снова упадет на Юпитер.

Рассмотрим теперь галактику А на границе сферы на рис. 2. Скорость, с которой галактика удаляется от центра О, определяется законом Хаббла v = HR. Если эта скорость больше второй космической для шара радиуса R, то галактика будет неограниченно удаляться от О, Вселенная будет неограниченно расширяться (рис. 9, а), если v меньше второй космической, то расширение сменится сжатием (рис. 9, б). Скорость v = HR определена законом Хаббла и какой случай — 9, а или 9, б — будет иметь место, определяется массой шара, т. е. зависит от плотности ρ.

Итак, для Вселенной при нынешней скорости расширения (сегодняшней постоянной Хаббла 75 км /сек*Мnс) и при малой плотности характерно неограниченное расширение, при большой плотности — расширение, сменяющееся сжатием. Существует критическое значение плотности вещества ρкрит отделяющее один случай от другого.

Несложно определить это критическое значение плотности. Действительно, известно, что вторая космическая скорость для шара массы М записывается следующим образом:

Подставляя в (13) выражения для массы , а вместо скорости v = HR, находим

или, выражая отсюда плотность ρ,

Итак, критическое значение средней плотности во Вселенной зависит от постоянной Хаббла Н. При постоянной Хаббла Н = 75 км /сек*Мnс для ρкрит получаем

Мы видим, что от величины фактической средней плотности всех видов материи во Вселенной зависит будущая история Вселенной.

Мы уже упоминали кратко в § 6, что для вещества, входящего в галактики, устредненная плотность составляет около ρгал = 3*10 -31 г /см 3 , т. е. много меньше критического значения ρкрит. Но, возможно, имеется много трудно наблюдаемого вещества между галактиками. Вопрос этот чрезвычайно важен. В следующих параграфах мы несколько ближе познакомимся с основными структурными единицами Вселенной — галактиками и их скоплениями, — и с проблемой межгалактической материи.

Источник

КРИТИЧЕСКАЯ ПЛОТНОСТЬ ВСЕЛЕННОЙ

значение плотности вещества во Вселенной, определяемое выражением где Н постоянная Хаббла (см. Хаббла закон), G — постоянная тяготения Ньютона. В однородных изотропных моделях Вселенной (см. Космологические модели )с равной нулю космологической постоянной величина r с является критич. значением плотности, отделяющим модель замкнутой Вселенной где r — реальная ср. плотность всех видов материи) от модели открытой Вселенной

В случае тяготение материи достаточно велико, оно сильно замедляет расширение Вселенной, и в будущем её расширение должно смениться сжатием. Трёхмерное пространство в рассматриваемых моделях при имеет положит. кривизну, замкнуто, объём его конечен.

При тяготение недостаточно для того, чтобы остановить расширение, и Вселенная в этих условиях неограниченно расширяется в будущем. Трёхмерное пространство в рассматриваемых моделях имеет отрицат. кривизну, объём его бесконечен (в простейшей топологии).

Постоянная Хаббла H известна из астрономич. наблюдений со значит. неопределённостью: Н (50-100) км/(с*Мпк). Отсюда возникает неопределённость в значении К. п. В. r c = (5*10 -30 -2*10 -29 ) г/см 3 . С др. стороны, наблюдения показывают, что усреднённая плотность вещества входящего в состав галактик, по-видимому, существенно меньше К. п. В. Однако, возможно, во Вселенной имеются труднонаблюдаемые формы материи, т. н. скрытые массы. Кол-во скрытой массы неизвестно, поэтому вопрос о соотношении между полной плотностью материи во Вселенной и К. п. В. остаётся открытым.

Читайте также:  Самое опасное во вселенной это

Лит. Зельдович Я. Б., Новиков И. Д., Строение и эволюция Вселенной, М., 1975; Пиблс П., Физическая космология, пер. с англ.. М., 1975.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Смотреть что такое «КРИТИЧЕСКАЯ ПЛОТНОСТЬ ВСЕЛЕННОЙ» в других словарях:

Критическая плотность Вселенной — Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формирование галактик … Википедия

КРИТИЧЕСКАЯ ПЛОТНОСТЬ ВСЕЛЕННОЙ — плотн. в ва во Вселенной, определяющая геом. свойства пространства в космологич. моделях, построенных на основе общей теории относительности. Определяется выражением: р = = ЗН2/(8п(пи)С), где Н постоянная Хаббла, С гравитац. постоянная;… … Естествознание. Энциклопедический словарь

Критическая плотность (космология) — Космология Изучаемые объекты и процессы … Википедия

Инфляционная модель Вселенной — Космология Изучаемые объекты и процессы … Википедия

Расширение Вселенной — Космология Изучаемые объекты и процессы … Википедия

Форма Вселенной — Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формирование … Википедия

Крупномасштабная структура Вселенной — Космология Изучаемые объекты и процессы … Википедия

Возраст Вселенной — Космология Изучаемые объекты и процессы … Википедия

Возраст вселенной — Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формирование … Википедия

Дата возникновения Вселенной — Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формирование … Википедия

Источник

Критическая плотность материи вселенной

§ 9. Средняя плотность вещества во Вселенной и проблема «скрытой» массы

Вернемся теперь к проблеме средней плотности вещества во Вселенной. Как уже отмечалось, сравнительно несложно учесть «легко наблюдаемое вещество», т. е. вещество, входящее в видимые галактики. Достаточно надежное определение этой величины было сделано в 1958 г. голландским астрономом Оортом. Практическое определение усредненной плотности вещества, входящего в галактики, производится в два приема.

Прежде всего подсчитывается число галактик разных светимостей, приходящихся на единицу объема, и вычисляется средняя светимость единицы объема Вселенной. Согласно Оорту она оказывается равной

Здесь , обозначает светимость Солнца, равную = 4*10 33 эрг /сек.

После этого для всех типов галактик вычисляется отношение их массы М к светимости L. Так, для эллиптических галактик отношение раз превышает отношение массы Солнца к его светимости .Для спиральных галактик это отношение M /L меняется от нескольких единиц до примерно 20 . С учетом процентного содержания разных типов галактик среднее значение M /L оказывается равным

Произведение (16) и (17) дают усредненную плотность вещества, входящего в галактики,

Эта величина заметно меньше критической плотности (16). Их отношение, обозначаемое обычно буквой Ω, равно

Если во Вселенной нет заметных количеств другой материи, усредненная плотность которой много больше ρгал, то Вселенная всегда будет расширяться.

Однако есть серьезные основания подозревать, что в пространстве между галактиками может быть много трудно наблюдаемых форм материи, получивших название «скрытой массы».

Одним из поводов для такого подозрения являются результаты измерений масс скоплений галактик. Измерения проводятся следующим образом.

Правильные скопления имеют симметричную форму, плотность галактик в них плавно спадает от центра к краю и поэтому есть все основания считать, что скопления находятся в равновесном состоянии, когда кинетическая энергия движений галактик уравновешена силой взаимного тяготения всех масс, входящих в скопление.

В этом случае справедлива теорема вириала, утверждающая, что кинетическая энергия всех членов скопления равна по абсолютной величине половине потенциальной энергии тяготения масс скопления (включая, конечно, и невидимые массы). Эта теорема позволяет вычислить полную массу скопления, если известны относительные скорости галактик в скоплении и размер скопления. Относительная скорость галактик в скоплении вычисляется по разности их красных смещений, а размер определяется по угловому размеру скопления на небе и расстоянию от нас. Такое определение, выполненное для уже упоминавшегося нами скопления Coma, приводит к массе порядка 2*10 15 M, что соответствует отношению масса — светимость M /L для всего скопления (по данным Эйбла)

Читайте также:  Список благодарностей вселенной примеры

Полученное отношение во много раз больше, чем M /L, даже для эллиптических галактик, у которых M /L наибольшее (сейчас данные пересматриваются). Если эти выводы правильны, то масса скопления много больше суммы масс галактик, в нее входящих. Такие же результаты получаются при рассмотрении других скоплений и групп галактик. Так возникла проблема «скрытой массы». Сразу же оговоримся, что проблема определения массы скоплений с помощью теоремы вириала — сложная задача и здесь возможны ошибки. Основной источник ошибок связан с тем, что скорости галактик измеряются с погрешностями, а это ведет к завышению дисперсии скоростей и, следовательно, к завышению массы скопления. Кроме того, возможна случайная проекция «чужих» галактик на скопление. Учет их также ведет к завышению массы. Однако тщательный анализ показывает, что «свалить» всю вину за получение парадоксально большой массы в скоплениях на подобные ошибки крайне трудно. Полученные выводы заставляют со всей серьезностью отнестись к поискам «скрытой массы», причем не только в скоплениях галактик, но и между скоплениями. В какой форме может существовать скрытая масса? Может быть, это межгалактический газ? * . Ведь объем пространства между галактиками гораздо больше объема пространства, приходящегося на галактики. Поэтому межгалактический газ, концентрация которого хотя и много меньше, чем у газа внутри галактик, может в результате все же давать гигантские массы.

* ( Анализом наблюдений, связанным с поисками межгалактического газа, занимались многие астрофизики. Мы отметим здесь работы советских ученых В. Л. Гинзбурга, Я. Б. Зельдовича, И. С. Шкловского, А. Г. Дорошкевича, В. Г. Курта, Л. М. Озерного, Р. А. Сюняева и др.)

Прежде всего напомним, что газ во Вселенной в основном состоит из водорода. Следовательно, чтобы установить наличие газа в межгалактическом пространстве, в первую очередь надо искать водород. В зависимости от физических условий газ может быть в нейтральном и ионизованном состояниях.

Начнем с оценки возможного количества нейтрального водорода.

Если свет от далекого источника идет через газ с нейтральными атомами водорода, то происходит поглощение (говоря точнее, резонансное рассеяние) излучения атомами в спектральной линии Lα с длиной волны λ = 1215 Å. Это ведет к ослаблению света от источника на данной длине волны. В качестве источников используются далекие квазары. Атомы водорода расположены на всем огромном пути от квазара и имеют поэтому разную скорость удаления от нас вследствие расширения Вселенной по закону Хаббла (v = HR). Разные скорости поглощающих атомов ведут к тому, что из-за эффекта Доплера линия поглощения в спектре растягивается в полосу. Тщательные поиски этого эффекта в спектрах квазаров с z > 2 не привели к успеху, полосы поглощения не обнаружено. Отсюда делается вывод, что средняя плотность числа нейтральных атомов в межгалактическом газе ничтожна: nHI -11 см 3 , а соответствующая плотность вещества

Аналогичные соображений применимы и для молекулярного водорода (поглощение в лаймановской полосе молекулярного водорода). Наблюдения приводят к выводу, что и плотность молекулярного водорода в межгалактическом газе пренебрежимо мала.

Таким образом, межгалактический газ, если он и есть, должен быть ионизованным, а значит, и сильно нагретым. Как показывает анализ, для этого необходимы температуры больше миллиона градусов. Не следует удивляться, что несмотря на такую температуру этот газ практически невидим. Дело в том, что плотность его очень мала, газ прозрачен, излучает мало видимого света. Но все же эта ионизованная высокотемпературная плазма испускает достаточно много ультрафиолетового излучения и мягких рентгеновских лучей.

Горячий газ можно искать по ультрафиолетовому излучению. Однако этот метод оказался не очень чувствительным.

Читайте также:  Кватро ты моя вселенная

Интересный метод был предложен советским астрофизиком Р. А. Сюняевым. Он основан на следующих соображениях. Ультрафиолетовый поток излучения от горячего межгалактического газа должен ионизовать водород на периферии галактик. Но радиоастрономические способы наблюдений позволили обнаружить нейтральный водород на окраинах нашей и других галактик. Расчет показывает, что если бы плотность горячего межгалактического газа равнялась критической ρH И = 10 -29 г /см 3 , то поток ультрафиолетового излучения от него полностью бы ионизовал водород на периферии галактик, в противоречии с наблюдениями. Следовательно,

Эта величина много больше ргал. Таким образом, к сожалению, рассматриваемый метод все же недостаточно чувствителен, чтобы исключить возможность существования большого количества горячего межгалактического газа. Вопрос о количестве такого газа, о том, больше ли его усредненная плотность, чем усредненная плотность вещества, входящего в галактики, остается открытым.

Обратимся теперь к газу в скоплениях галактик. Радионаблюдения показывают, что нейтрального водорода в скоплениях ничтожно мало. Однако с помощью рентгеновских телескопов, установленных на спутниках, был обнаружен горячий ионизованный газ в богатых скоплениях галактик. Оказалось, что этот газ нагрет до Т ≈ 10 8 К. Его полная масса может доходить до 10 13 М. Цифра внушительная, но мы видели выше, что полная масса скопления Coma, определенная по теореме вириала, гораздо больше — превышает 10 15 M д. Таким образом, наличие горячего газа в скоплениях никак не исчерпывает проблемы скрытой массы.

Несколько лет назад у этой пресловутой проблемы выявился еще один аспект.

В последнее время появляется все больше сторонников идеи о том, что галактики могут быть окружены огромными массивными коронами слабо светящихся объектов, которые по их свечению обнаружить крайне трудно. Это могут быть, например, звезды низкой светимости. Масса этих звезд в коронах не влияет заметно на динамику внутренних частей галактик * , которые хорошо наблюдаются, и поэтому наблюдения этих внутренних частей дают только их массу и ничего не говорят о массах корон. Но масса короны должна влиять на движение карликовых галактик — спутников основной галактики. Именно по этому влиянию и пытаются обнаружить в настоящее время короны галактик. Возможно, что учет этих корон существенно изменит оценку масс галактик в скоплениях и решит проблему «скрытой массы». Однако в настоящее время вопрос о коронах галактик еще не решен.

* ( Вспомним, что сферическая оболочка не создает гравитационного поля во внутренней полости (см. § 2 гл. 1).)

Нам остается еще разобрать вопрос об экзотических кандидатах на роль скрытой массы, таких как космические лучи, нейтрино, гравитационные волны, а также и другие виды физической материи.

Наблюдения показывают, что плотность массы, соответствующая космическим лучам, не более 10 -35 г /см 3 , т. е. очень мала.

Что касается нейтрино и гравитационных волн, то тут дело обстоит сложнее. Взаимодействие этих видов физической материи с обычным веществом крайне слабое и поэтому, если бы Вселенная была заполнена нейтрино или гравитационными волнами с плотностью массы (соответствующей плотности энергии по формуле Эйнштейна е = ρс 2 ) даже больше ρкрит, то все равно прямые физические методы не позволили бы их обнаружить. Есть косвенные соображения о малой вероятности большого количества этих экзотических форм материи. С некоторыми соображениями мы познакомимся в дальнейшем.

Итак, подытоживая сказанное, мы видим, что вопрос о среднем значении плотности вещества р во Вселенной пока не решен. В § 4 гл. 2 мы еще раз вернемся к этому вопросу и рассмотрим способ определения ρ, не зависящий от конкретной природы физической материи, а использующий тот факт, что любая масса создает поле тяготения. Правда, и этот универсальный метод не привел пока к успеху.

Здесь же в заключение приведем мнение большинства специалистов о наиболее вероятном значении средней плотности всех видов материи во Вселенной, полученном на основе всех способов наблюдений.

Это наиболее вероятное значение есть

Истина в науке не устанавливается подсчетом большинства голосов специалистов, но читателю полезно знать, что по мнению этих самых специалистов плотность материи во Вселенной не превышает критического значения и Вселенной предстоит неограниченное расширение.

Источник

Adblock
detector