Звездная пыль. Как ученые ищут жизнь во Вселенной
Если в предыдущей части мы рассказывали, как и где ищут жизнь в Солнечной системе, то в этой пришла пора взглянуть на звезды. Благодаря развитию технологий мы можем приглядывать наиболее пригодные для жизни миры, а в ближайшем будущем, возможно, и проверить самые «подозрительные» из них.
Истина где-то там
Несмотря на то что поиск внеземной жизни — вопрос, требующий пристального внимания и изучения, для чего больше подходят находящиеся поблизости объекты, шансы обнаружить в Солнечной системе организмы, которые человек может увидеть и потрогать, стремятся к нулю. Совсем другой вопрос, если речь идет о поиске живых существ или даже братьев по разуму в других звездных системах.
Главная задача в обнаружении потенциально обитаемых мест лежит прежде всего на телескопах. Современные обсерватории способны предсказывать наличие и расположение планет у звезд, наблюдая за движением и яркостью светил, а в некоторых случаях, возможно, даже прямое обнаружение планет. Но большинство обнаруженных экзопланет (планет за пределами Солнечной системы) не подходят для зарождения жизни или находятся в неблагополучных условиях: слишком близко или слишком далеко от светила. Или вращаются вокруг звезд, излучающих слишком много радиации. Но, к счастью, есть и исключения, пожалуй, самое известное — система TRAPPIST -1.
Например, малый телескоп для наблюдения за транзитными планетами и планетезималями, или TRAPPIST, начал работу в 2010 году. Именно благодаря этому аппарату, обошедшемуся «всего» в $400 000, мы обязаны обнаружением системы TRAPPIST-1, состоящей из семи экзопланет, вращающихся вокруг карликовой звезды в созвездии Водолея.
Три из обнаруженных планет находятся в зоне обитаемости — на находящихся в ней планетах вода может находиться в жидком состоянии (заметьте, что нет гарантий, что там вода есть, но мы хотя бы знаем, какие миры исследовать пристальнее). Более того, обнаружение подобных планет увеличивает шансы на обнаружение жизни еще больше в виду того, что, как видно из случаев с Энцеладом и Титаном, спутники экзопланет зачастую могут быть еще больше интересны исследователям.
Несмотря на то что, как показывает пример орбитального телескопа Kepler, обнаруживать экзопланеты могут даже списанные аппараты, в полной мере раскрыть потенциал звезд сможет новый орбитальный телескоп имени Джеймса Уэбба, готовящийся к запуску в 2019 году. Он, по мнению ученых, способен не только обнаружить экзопланету, но и определить наличие атмосферы и ее состав. Например, он сможет проверить надежды ученых на систему TRAPPIST-1.
Способный рассматривать планеты в миллиардах километров от Земли, телескоп Джеймса Уэбба может столкнуться с вполне земными проблемами. Его проект разрабатывает NASA, расходы которого на прибор приблизились к отметке в $9 млрд. Это может вызвать вопросы со стороны правительства США и привести к проблемам со сроками запуска аппарата.
В контексте трудностей с финансированием на проекты поиска жизни примечателен пример упомянутого в предыдущей статье миллиардера Юрия Мильнера — человека, в чьих платежеспособности и интересе к космическим проектам сомневаться не приходится.
Юрий Мильнер, окончивший физический факультет МГУ, до проекта по исследованию Энцелада задействовал свои ресурсы для масштабного проекта Breakthrough Initiatives, одной из составных частей которого является инициатива Breakthrough Listen — поиск косвенных признаков жизни вне Солнечной системы. Речь идет об изучении быстрых радиовсплесков, которые позволяют искать высокоразвитые цивилизации, радиоимпульсы от деятельности которых способны достичь пределов Солнечной системы. Такое явление уже зафиксировано, но пока все его проявления можно объяснить природными причинами. Мильнер не унывает, оценивая текущий ход проекта, миллиардер оценивает вложения как оправданные.
Но самым амбициозным начинанием Мильнера стоит назвать Breakthrough Starshot — идея, над реализацией которой миллиардер работает совместно со всемирно известными учеными и предпринимателями. В частности, он запускал ее совместно с недавно умершим астрофизиком Стивеном Хокингом и здравствующим основателем соцсети Facebook Марком Цукербергом.
Идея проекта заключается в создании аппарата весом не более нескольких грамм, который планируется направить к Альфа Центавре — ближайшей к Солнцу звездной системе, состоящей из трех звезд. Для того чтобы преодолеть дистанцию в 4,37 световых года (или 40 000 000 000 000 км), крохотный спутник будет ускоряться за счет лазерного паруса. Применяя эту технологию, спутники смогут развить скорость до 1/20 от скорости света (последняя равна примерно 300 000 км/с).
В рамках проекта, на который Мильнер выделил $100 млн, физики планируют отправить к звезде Альфа Центавра наноспутники на лазерных парусах, которые достигнут ее до конца XXI века.
Между физикой и философией
Если мы ищем не просто жизнь, а братьев по разуму, то, вероятно, можем столкнуться с цивилизацией, чей уровень развития превышает наш. Сможем ли мы опознать их в бездне космоса?
Для понимания того, что может представлять собой космическая цивилизация, советский астроном Николай Кардашев в 1964 году в работе «Передача информации внеземными цивилизациями» изложил идею градации цивилизаций по уровню развития, которая получила впоследствии название шкалы Кардашева. Он разделил цивилизации на типы I, II и III.
Так, цивилизация типа I — планетарная цивилизация, использующая 100% энергии своей родной планеты. Человечество, которое пока не может быть даже включено в шкалу Кардашева, должно увеличить производство энергии примерно в 100 000 раз, чтобы достичь этого уровня. По мнению ряда специалистов, для достижения этого уровня нам потребуется 100-200 лет.
Цивилизация типа II способна обуздать ближайшую к ней звезду и получать всю вырабатываемую светилом энергию. Несмотря на то что человечеству до этого этапа предстоит еще долгий путь, мы уже имеем название для вероятного инженерного сооружения, способного на выполнение подобных операций со звездой, — сфера Дайсона. Именно этим гипотетическим устройством вероятная цивилизация II типа сможет похвастаться перед братьями по разуму.
И, наконец, цивилизация типа III способна использовать энергию целой галактики. Если учесть во всех смыслах астрономическое количество звезд и галактик, шанс на существование цивилизаций подобного типа сохраняется.
Как шкала Кардашева может помочь в естественно-научных исследованиях? Благодаря ей мы можем как минимум попытаться представить, какими могут быть признаки развитых цивилизаций во Вселенной.
Пример подобного «знака» — KIC 8462852, или звезда Табби в созвездии Лебедя, на расстоянии 1500 световых лет от Солнца. Чем она отличается от остальных? Все просто — ведь именно она стала поводом для оживленных дискуссий среди ученых в 2015 году.
Особенность звезды Табби заключается в том, что астрономы отметили существенные аномальные колебания в ее яркости: светило «тускнело» на 15-20%, что ученые сочли возможным признаком находящегося перед ней гигантского объекта. Причем это не могла быть проходящая планета, в этом случае яркость упала бы лишь на 1%, а среди объяснений феномена звезды высказывались предположения об упомянутой выше сфере Дайсона.
Загадка звезды Табби привлекла внимание не только профессионального сообщества, но и энтузиастов по всему миру. Именно благодаря их кампании на Kickstarter удалось собрать $100 000 на дальнейшие исследования.
Правда, ученые не любят нездоровых сенсаций. Прежде чем объявлять об уникальных открытиях, они ищут объяснения на основе существующих явлений. Выяснилось, что виновником активности звезды скорее всего является огромное облако космической пыли, образовавшееся от столкновения комет. Но так ли это важно, когда в случае с этой звездой куда показательнее сам интерес к ней со стороны общества и ученых, а не отрицательный результат их усилий.
После поисков жизни на спутниках газовых гигантов и вокруг звезд в третьей части мы вернемся на Землю и узнаем, какие сюрпризы может хранить она.
Источник
Что такое экзопланеты и как ищут жизнь во Вселенной
Что такое экзопланета
В слове «экзопланета» приставка «экзо» означает «вне», «снаружи». Получается, что экзопланеты — это все планеты за пределами Солнечной системы. Большинство из них, как и Земля, вращаются вокруг звезд, но встречаются и не привязанные к орбите определенной звезды.
Большинство открытых экзопланет находятся в одном регионе нашей Галактики — внутри Млечного пути. При помощи мощных телескопов ученые измеряют размеры планет, их состав и поверхность. Большая часть открытых экзопланет состоят из тех же элементов, что и планеты Солнечной системы. Отличаются только комбинации и соотношение: на некоторых больше воды и льда, на других — железа и углерода. При этом нет ни одной планеты, которая была бы идентична Земле или другим телам Солнечной системы.
Первую экзопланету обнаружили в 1992 году. С тех пор астрономы идентифицировали тысячи планет, и их число постоянно растет. С Земли не всегда просто обнаружить новые тела: не хватает мощности телескопов, и обзор может перекрываться звездами или другими планетами. Количество открытых небесных объектов может увеличиться в разы, как только ученые наладят технологию запуска космических роботизированных телескопов, которые будут отправлять на Землю данные о своих наблюдениях. Часть таких телескопов уже запущена в космос, но развитие направления поможет ускорить процесс открытия и изучения небесных тел.
Какие бывают типы экзопланет
Наша Галактика состоит из огромного количества звезд — не менее 100 млрд, включая Солнце. Если представить, что вокруг каждой звезды вращается минимум одна планета, то количество неоткрытых экзопланет представляется астрономическим. При этом ученые предполагают, что у каждой звезды есть своя система, в которую входит сразу несколько планет. В таком случае количество экзопланет внутри одного Млечного Пути может составлять триллионы.
Тысячи лет до нашего поколения люди догадывались о существовании планет за пределами Солнечной системы. Сейчас мы точно знаем, что экзопланеты существуют и их много, но все еще не можем добраться ни до одной из них. У ближайшей к Земле звезды — Проксима Центавры — есть минимум одна планета. Вероятно, это планета земного типа, и на ней может находиться вода. Но лететь до нее придется более четырех световых лет, при этом ученые пока не могут с точностью описать свойства планеты и сказать, подходит ли она для жизни. Остальные экзопланеты находятся на расстоянии сотен или тысяч световых лет от нас, и посетить их пока нет никакой возможности.
С момента открытия первой экзопланеты прошло почти 30 лет, но мы до сих пор не знаем о всем разнообразии существующих планет. Поэтому их деление скорее условно.
Газовые гиганты
В космосе встречаются газовые гиганты, наподобие Юпитера и Сатурна. Сейчас известно о 1367 экзопланетах такого типа. Самые известные из них:
51 Pegasi b — газовый гигант с атмосферной температурой более 1000 °C. Первая открытая планета из тех, что вращаются вокруг звезд солнечного типа.
KELT-9 b — cамая горячая известная экзопланета. Температура на дневной стороне может подниматься до 4600 °C. Находится на расстоянии 667 световых лет от Земли.
Нептунианские экзопланеты
Маленькие планеты с атмосферой, на которых преобладают водород и гелий. Открыто 1484 планеты, самые известные:
Kepler-1655 b — экзопланета, похожая на Нептун. Полный оборот вокруг звезды (то есть, один год) на Кеплере, проходит за 11,9 дней. Экзопланету открыли в 2018 году.
GJ 436 b — экзопланета, которая находится относительно близко к Земле: лететь до нее придется 32 года.
Суперземли
Экзопланеты из газа, горных пород и их комбинаций, которые в несколько раз больше Земли. Открыто 1346 планет, самые известные:
Barnard’s Star b — вторая самая близкая к Земле экзопланета, лететь до нее шесть лет. Планету открыли в 2018 году. Она в 3,2 раза больше нашей планеты. Звезда, вокруг которой вращается экзопланета, дает ей только 2% энергии, которую получает Земля от Солнца.
GJ 15 A b — экзопланета, которая вращается вокруг звезды красного карлика в 11 световых годах от Земли. В ее системе есть еще одна планета, что делает ее ближайшей к нам суперземлей со своей системой.
Планеты земного типа
Скалистые тела, похожие на Землю, Марс или Венеру. Открыто 164 планеты, самые известные:
TRAPPIST-1 e — ее масса составляет 60% массы Земли, а год на планете длится 6,1 дня. Планету открыли в 2017 году.
TRAPPIST-1 d — как и Земля — третья планета от своей звезды. Скалистая планета с температурой поверхности около 2290 °C.
Как ищут экзопланеты
Экзопланеты находят при помощи мощных телескопов, которые располагаются на Земле или летают в космосе. Изучение неба через космический телескоп обсерватории NASA «Кеплер» показало, что в Млечном пути находится больше планет, чем звезд. Данные рассчитывались через статистическую оценку. Сейчас ученым известно, что в Галактике сильно распространены маленькие планеты. Однако открывать их сложно: в силу их размера они могут быть не видны в телескоп. Все усложняется тем, что от них, в отличие от звезд, не исходит света. Вдобавок яркий свет звезды может скрывать планету: это как пытаться рассмотреть пылинку на включенной лампе.
Чтобы найти экзопланету, астрономы пытаются обнаружить признаки нахождения планеты у материнской звезды. Свойства звезды могут меняться, если вокруг нее вращается планета. Во-первых, планета влияет на вращение: звезда начинает немного раскачиваться, и специальное оборудование может уловить это движение. Планета — единственное, что может повлиять на такое изменение. Во-вторых, мощный телескоп может поймать небольшую тень, которая исходит от планеты на звезду. Существуют и другие способы поиска, но эти два считаются основными и применяются чаще всего.
Несмотря на существование таких способов, ученым пока не хватает мощностей, чтобы открыть все планеты. До сих пор не было обнаружено ни одной системы, похожей на Солнечную. Вероятно, это говорит о том, что современные телескопы не могут уловить маленькие планеты. К тому же многие из них вращаются на далеком от звезд расстоянии, и на них почти не падает свет, что делает их поиск почти невозможным с далекого расстояния.
Актуальные прогнозы исследований экзопланет
Мощные телескопы и технологии нового поколения помогут открыть все большее количество экзопланет. Они помогут приблизить нас к поиску планет, похожих на Землю: такие вращаются относительно далеко от звезд и имеют маленькие размеры.
Космический телескоп Джеймса Уэбба
Гигантский телескоп размером с теннисный корт будет запущен в космос из Французской Гвианы в 2021 году. Телескоп будет наблюдать Вселенную в инфракрасном свете, изучать формирование планетных систем и состав атмосфер экзопланет. Ожидается, что он станет главным космическим инструментом нынешнего десятилетия.
Космическая платформа: телескоп Нэнси Роман
В середине 2020-х годов в космос запустят электростанцию телескопов, которая поможет лучше изучить экзоланеты. Окно зрения этой станции будет в 100 раз превышать окно самого мощного телескопа NASA, который сейчас занимается поиском планет. Главная цель — изучение темной материи и темной энергии, но в рамках своей программы он будет делать и фотографии экзопланет. С его помощью начнут исследовать плотные звезды Млечного Пути, а на их фоне можно поймать и новые планеты.
Зачем изучать экзопланеты
Теоретически, изучение экзопланет поможет ответить на вопрос: «одни ли мы в этой Вселенной?». Поиск новых планет — одно из самых быстроразвивающихся направлений астрономии. Изучение разных космических тел поможет лучше понять, как устроена Солнечная система, как она сформировалась, и есть ли в мире похожие группы планет. А также, существует ли планета, настолько похожая на Землю, что на нее можно переехать.
В погоне за этими ответами ученые делают новые открытия и раскрывают детали Вселенной. В частности, находят возрастные планеты и делают предположения о том, как может развиваться Солнечная система и какие у нее сроки жизни.
Основная цель направления — поиск признаков жизни во Вселенной. Небо экзопланет может содержать элементы, которые помогут ответить на этот вопрос.
Источник