Меню

Квантовая теория образования вселенной

Как образовалась Вселенная

Что же такое Вселенная? Если емко, то это сумма всего существующего. Это все время, пространство, материя и энергия, образовавшиеся и расширяющиеся вот уже 13.8 миллиардов лет. Никто не может точно сказать, насколько обширны просторы нашего мира и пока нет точных предсказаний финала.

Определение Вселенной

Само слово «Вселенная» происходит от латинского «universum». Впервые его использовал Цицерон, а уже после него оно стало общепринятым у римских авторов. Понятие обозначало мир и космос. На тот момент люди в этих словах видели Землю, все известные живые существа, Луну, Солнце, планеты (Меркурий, Венера, Марс, Юпитер и Сатурн) и звезды.

Иногда вместо «Вселенная» используют «космос», которое с греческого переводится как «мир». Кроме того, среди терминов фигурировали «природа» и «все».

В современном понятии вмещают все, что существует во Вселенной – наша система, Млечный Путь и прочие структуры. Также сюда входят все виды энергии, пространство-время и физические законы.

Одним из основных вопросов, которые не выходят из сознания человека, всегда был и является вопрос: «как появилась Вселенная?». Конечно же, однозначного ответа на данный вопрос нет, и вряд ли будет получен в скором времени, однако наука работает в этом направлении и формирует некую теоретическую модель зарождения нашей Вселенной.

Теории происхождения Вселенной

Креационизм: все создал Господь Бог

Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога.

Например, Альберт Эйнштейн говорил:

«Каждый серьезный естествоиспытатель должен быть каким-то образом человеком религиозным. Иначе он не способен себе представить, что те невероятно тонкие взаимозависимости, которые он наблюдает, выдуманы не им.»

Теория Большого Взрыва (модель горячей Вселенной)

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Отвечает на вопрос — каким образом образовались химические элементы и почему распространённость их именно такая, какая сейчас наблюдается.

Согласно этой теории, около 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. Однажды из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.

Теория Большого взрыв

Первые 10 -43 секунды после Большого Взрыва называют этапом квантового хаоса. Природа мироздания на этом этапе существования не поддается описанию в рамках известной нам физики. Происходит распад непрерывного единого пространства-времени на кванты.

Спустя 10 000 лет энергия вещества постепенно превосходит энергию излучения и происходит их разделения. Вещество начинает доминировать над излучением, возникает реликтовый фон.

Теория Большого Взрыва тверже встала на ноги после открытия космологического красного смещения и реликтового излучения. Два этих явления — самые весомые доводы в пользу правильности теории.

Также разделение вещества с излучением значительно усилило изначальные неоднородности в распределении вещества, в результате чего начали образовываться галактики и сверхгалактики. Законны Вселенной пришли к тому виду, в котором мы наблюдаем их сегодня.

Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется.

Модель расширяющейся Вселенной описывает сам факт расширения. В общем случае не рассматривается, когда и почему Вселенная начала расширяться. В основе большинства моделей лежит общая теория относительности и её геометрический взгляд на природу гравитации.

Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с температурой всего 2,7 Кельвин.

Теория эволюции крупномасштабных структур

Как показывают данные по реликтовому фону, в момент отделения излучения от вещества Вселенная была фактически однородна, флуктуации вещества были крайне малыми, и это представляет собой значительную проблему.

Вторая проблема — ячеистая структура сверхскоплений галактик и одновременно сфероподобная — у скоплений меньших размеров. Любая теория, пытающаяся объяснить происхождение крупномасштабной структуры Вселенной, в обязательном порядке должна решить эти две проблемы.

Современная теория формирования крупномасштабной структуры, как впрочем и отдельных галактик, носит названия «иерархическая теория».

Суть — вначале галактики были небольшие по размеру (примерно как Магеллановы облака ), но со временем они сливаются, образуя всё большие галактики.

В последнее время верность теории поставлена под вопрос.

Теория струн

Эта гипотеза в некоторой степени опровергает Большой взрыв в качестве начального момента возникновения элементов открытого космоса.

Согласно теории струн, Вселенная существовала всегда. Гипотеза описывает взаимодействие и структуру материи, где существует определенный набор частиц, которые делятся на кварки, бозоны и лептоны. Говоря простым языком, эти элементы являются основой мироздания, поскольку их размер настолько мал, что деление на другие составляющие стало невозможным.

Отличительной чертой теории о том, как образовалась Вселенная, становится утверждение о вышеупомянутых частицах, которые представляют собой ультрамикроскопические струны, которые постоянно колеблются. Поодиночке они не имеют материальной формы, являясь энергией, которая в совокупности создает все физические элементы космоса.

Примером в данной ситуации послужит огонь: глядя на него, он кажется материей, однако он неосязаем.

Хаотическая теория инфляции — теория Андрея Линде

Согласно данной теории существует некоторое скалярное поле, которое неоднородно во всем своем объеме. То есть в различных областях вселенной скалярное поле имеет разное значение. Тогда в областях, где поле слабое – ничего не происходит, в то время как области с сильных полем начинают расширяться (инфляция) за счет его энергии, образуя при этом новые вселенные.

Такой сценарий подразумевает существование множества миров, возникших неодновременно и имеющих свой набор элементарных частиц, а, следовательно, и законов природы.

Теория Ли Смолина

Эта теория достаточно известна и предполагает, что Большой Взрыв не является началом существования Вселенной, а – лишь фазовым переходом между двумя ее состояниями. Так как до Большого Взрыва Вселенная существовала в форме космологической сингулярности, близкой по своей природе к сингулярности черной дыры, Смолин предполагает, что Вселенная могла возникнуть из черной дыры.

Эволюция Вселенной

Как происходил процесс развития и эволюции Вселенной? В течение следующих миллиардов лет гравитация заставила более плотные области притягиваться. В этом процессе формировались газовые облака, звезды, галактические структуры и прочие небесные объекты.

Этот период именуют Структурной Эпохой, так как именно в этот временной отрезок зарождалась современная Вселенная. Видимое вещество распределялось на различные формирования (звезды в галактики, а те в скопления и сверхскопления).

Что было до появления Вселенной

Сложно представить время за 13,7 миллиардов лет до сегодняшнего дня, когда вся Вселенная представляла собой сингулярность. Согласно теории Большого взрыва, один из главных претендентов на роль объяснения того, откуда появилась Вселенная и вся материя в космосе — все было сжато в точку, меньшую, чем субатомная частица. Но если это еще можно принять, задумайтесь вот о чем: что же было до того, как случился Большой взрыв?

Этот вопрос современной космологии уходит корнями еще в четвертое столетие нашей эры. 1600 лет назад теолог Августин Блаженный как и один из лучших физиков 20 века Альберт Эйнштейн пытались понять природу до сотворения Вселенной. Они пришли к выводу , что просто не было никакого «до».

В настоящее время человеком выдвигаются различные теории.

Теория Мультивселенной

Что если наша Вселенная является потомком другой, старшей Вселенной? Некоторые астрофизики полагают, что пролить свет на эту историю поможет реликтовое излучение, оставшееся от большого взрыва.

Согласно этой теории, в первые мгновения своего существования Вселенная начала чрезвычайно быстро расширяться. Также теория объясняет температуру и плотность флуктуаций реликтового излучения и подсказывает, что эти флуктуации должны быть одинаковыми.

Читайте также:  Знак вселенной 666 что значит

Но, как выяснилось, нет. Последние исследования дали понять, что Вселенная на самом деле однобока, и в некоторых областях флуктуаций больше, чем в других. Некоторые космологи считают, что это наблюдение подтверждает, что у нашей Вселенной была «мать»(!)

В теории хаотической инфляции эта идея приобретает размах: бесконечный прогресс инфляционных пузырьков порождает обилие вселенных, и каждая из них порождает еще больше инфляционных пузырьков в огромном количестве Мультивселенных.

Теория белых и черных дыр

Тем не менее, существуют модели, которыми пытаются объяснить образование сингулярности до большого взрыва. Если вы думаете о черных дырах как о гигантских мусоросборниках, они являются главными кандидатами первоначального сжатия, поэтому наша расширяющаяся Вселенная вполне может быть белой дырой — выходным отверстием черной дыры, и каждая черная дыра в нашей Вселенной может вмещать в себя отдельную вселенную.

Большой скачок

Другие ученые считают, что в основе формирования сингулярности лежит цикл под названием «большой скачок», в результате которого расширяющаяся вселенная в итоге коллапсирует сама в себя, порождая другую сингулярность, которая, опять же, порождает другой большой взрыв.

Этот процесс будет вечным, и все сингулярности и все схлопывания не будут представлять собой ничего другого, кроме как переход в другую фазу существования Вселенной.

Теория циклической Вселенной

Последнее объяснение, которое мы рассмотрим, использует идею циклической Вселенной, порожденной теорией струн. Она предполагает, что новая материя и потоки энергии появляются каждые триллионы лет, когда две мембраны или браны, лежащие за пределами наших измерений, сталкиваются между собой.

Что было до Большого взрыва? Вопрос остается открытым. Может быть, ничего. Может, другая Вселенная или другая версия нашей. Может, океан Вселенных, в каждой из которых — свой набор законов и констант, диктующих природу физической реальности.

Проблемы современных моделей рождения и эволюции Вселенной

Многие теории, касающиеся Вселенной в последнее время сталкиваются с проблемами, как теоретического, так и, что более важно, наблюдательного характера:

  1. Вопрос о форме Вселенной является важным открытым вопросом космологии. Говоря математическим языком, перед нами стоит проблема поиска трёхмерного пространственного сечения Вселенной, то есть такой фигуры, которая наилучшим образом представляет пространственный аспект Вселенной.
  2. Неизвестно, является ли Вселенная глобально пространственно плоской, то есть применимы ли законы Евклидовой геометрии на самых больших масштабах.
  3. Также неизвестно, является ли Вселенная односвязной или многосвязной. Согласно стандартной модели расширения, Вселенная не имеет пространственных границ, но может быть пространственно конечна.
  4. Существуют предположения, что Вселенная изначально родилась вращающейся. Классическим представлением о зарождении является идея об изотропности Большого взрыва, то есть о распространении энергии одинаково во все стороны. Однако появилась и получила некоторое подтверждение конкурирующая гипотеза о наличии изначального момента вращения Вселенной.

Видео

Источник

Квантовая теория образования вселенной

Новый подход к проблеме квантовой гравитации, над которой ученые бьются уже многие десятилетия, возвращает к основам и показывает, как «складываются» друг с другом «кирпичики», из которых построены пространство и время.

Как возникли пространство и время? Как они образовали гладкую четырехмерную пустоту, служащую фоном для нашего физического мира? Как выглядят они при ближайшем рассмотрении? Подобные вопросы возникают на переднем крае современной науки и подталкивают к исследованию квантовой гравитации — до сих пор пока еще не созданного объединения общей теории относительности Эйнштейна с квантовой теорией. Теория относительности описывает, как пространство и время в макроскопическом масштабе могут принимать бесчисленные формы, создавая то, что мы называем силой тяготения или гравитацией. Квантовая теория описывает законы физики, действующие в атомном и субатомном масштабах, полностью игнорируя эффекты гравитации. Теория квантовой гравитации должна описать в квантовых законах природу пространства-времени в самых малых масштабах — пространствах между самыми малыми известными элементарными частицами — и, возможно, объяснить ее через какие-то фундаментальные составляющие.

Основным кандидатом на эту роль часто называют теорию суперструн, но она пока не дала ответа ни на один из животрепещущих вопросов. Более того, следуя своей внутренней логике, она вскрыла еще более глубокие слои новых экзотических составляющих и взаимоотношений между ними, приводя к ошеломительному разнообразию возможных результатов.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Общеизвестно, что квантовая теория и общая теория относительности Эйнштейна не стыкуются друг с другом. Физики уже давно пытаются связать их в единую теорию квантовой гравитации, но больших успехов не добились.

Предлагаемый новый подход не вводит никаких экзотических положений, но открывает новый путь приложения известных законов к отдельным элементам пространства-времени. Эти элементы приходят в согласие подобно молекулам в кристалле.

Наш подход показывает, как известное нам четырехмерное пространство-время может динамически возникнуть из более фундаментальных компонентов. Более того, он позволяет предположить, как это пространство-время в микроскопическом масштабе постепенно переходит от гладкой непрерывности к причудливой фрактальности

В последние годы наша работа стала перспективной альтернативой изъезженной магистрали теоретической физики. Последовав простейшему рецепту — взять несколько фундаментальных составляющих, собрать их в соответствии с хорошо известными квантовыми принципами (без какой-либо экзотики), хорошенько перемешать и дать отстояться, — вы получите квантовое пространство-время. Процесс достаточно прост, чтобы его можно было смоделировать на портативном компьютере.

Иными словами, если, рассматривая пустое пространство-время (вакуум) как некую нематериальную субстанцию, состоящую из очень большого числа микроскопических бесструктурных элементов, позволить им взаимодействовать между собой в соответствии с простыми правилами теории гравитации и квантовой теории, то эти элементы спонтанно организуются в единое целое, которое во многих отношениях будет выглядеть так же, как наблюдаемая Вселенная. Процесс подобен тому, как молекулы организуются в кристаллическое или аморфное твердое тело.

При таком подходе пространство-время может оказаться похожим скорее на обычное смешанное жаркое, чем на сложный свадебный торт. Более того, в отличие от других подходов к квантовой гравитации, наш очень устойчив. Когда мы меняем детали своей модели, результат практически не изменяется. Такая устойчивость дает основания надеяться, что мы на правильном пути. Если бы результат был чувствителен к тому, куда мы поместили каждый кусочек нашего огромного ансамбля, мы получили бы колоссальное количество равновероятных барочных форм, что исключило бы возможность объяснения того, почему Вселенная оказалась именно такой, какая она есть.

Подобные механизмы самосборки и самоорганизации действуют в физике, биологии и других областях науки. Красивым примером служит поведение больших стай птиц, например скворцов. Отдельные птицы взаимодействуют лишь с небольшим числом соседей; вожака, который объяснял бы им, что нужно делать, нет. Тем не менее стая формируется и движется как единое целое, обладая коллективными, или производными свойствами, не проявляющимися в поведении отдельных особей.

Краткая история квантовой гравитации

Прежние попытки объяснения квантовой структуры пространства-времени как формирующейся в процессе самопроизвольного возникновения не принесли заметного успеха. Они исходили из евклидовой квантовой гравитации. Программа исследований была начата в конце 1970-х гг. и стала популярной благодаря книге «Краткая история времени» (Brief History of Time) физика Стивена Хокинга (Stephen Hawking), ставшей бестселлером. Эта программа исходит из принципа суперпозиции, фундаментального для квантовой механики. Любой объект, классический или квантовый, находится в некотором состоянии, характеризуемом, например, положением и скоростью. Но если состояние классического объекта может быть описано свойственным только ему набором чисел, то состояние квантового гораздо богаче: оно является суммой всех возможных классических состояний.

ТЕОРИИ КВАНТОВОЙ ГРАВИТАЦИИ

ТЕОРИЯ СТРУН
Поддерживаемая большинством физиков-теоретиков, эта теория касается не только квантовой гравитации, но и всех видов материи и сил. В ее основе лежит представление, что все частицы (включая гипотетические, переносящие гравитацию) представляют собой колеблющиеся струны

ПЕТЛЕВАЯ КВАНТОВАЯ ГРАВИТАЦИЯ
Главная альтернатива теории струн. Она привлекает новый метод примене- ния правил квантовой механики к общей теории относительности Эйнштейна. Пространство делится на дискретные «атомы» объема

ЕВКЛИДОВА КВАНТОВАЯ ГРАВИТАЦИЯ
Подход, получивший известность благодаря физику Стивену Хокингу, основан на предположении, что пространство-время возникает из общего квантового среднего всех возможных форм. В этой теории время считается равноправным с пространственными измерениями

КАУЗАЛЬНАЯ ДИНАМИЧЕСКАЯ ТРИАНГУЛЯЦИЯ
Этот подход, являющийся темой настоящей статьи, представляет собой современный вариант евклидова подхода. Он основан на аппроксимации пространства-времени мозаикой треугольников с изначальным различением пространства и времени. В малых масштабах пространство-время приобретает фрактальную структуру

Например, классический бильярдный шар движется по определенной траектории, и его положение и скорость в любой момент могут быть точно определены. В случае гораздо меньшего электрона все обстоит иначе. Его движение подчиняется квантовым законам, согласно которым электрон может существовать одновременно во множестве мест и обладать множеством скоростей. В отсутствие внешних воздействий из точки А в точку В электрон движется не по прямой, а по всем возможным путям одновременно. Качественная картина всех возможных путей его движения, собранных воедино, переходит в строгий математический «рецепт» для квантовой суперпозиции, сформулированный нобелевским лауреатом Ричардом Фейнманом (Richard Feynman), и дающий взвешенное среднее всех отдельных возможностей.

Читайте также:  Вселенная это компьютерная модель

Пользуясь предложенным рецептом, можно рассчитать вероятность нахождения электрона в любом конкретном диапазоне положений и скоростей в стороне от прямого пути, по которому он должен был бы двигаться по законам классической механики. Отличительное свойство квантовомеханического поведения частицы — отклонения от единой четкой траектории, т.н. квантовые флуктуации. Чем меньше размер рассматриваемой физической системы, тем больше роль квантовых флуктуаций.

В евклидовой квантовой гравитации принцип суперпозиции применяется ко всей Вселенной в целом. В этом случае суперпозиция состоит не из различных траекторий частицы, а из возможных путей эволюции вселенной во времени, в частности форм пространства-времени. Чтобы свести задачу к виду, позволяющему искать решение, физики обычно рассматривают только общие форму и размер пространства-времени, а не каждое из его мыслимых искажений (см.: Jonathan J. Halliwell. Quantum Cosmology and the Creation of the Universe // Scientific American, December 1991).

В 1980–1990-х гг. исследования в области евклидовой квантовой гравитации прошли большой технический путь, связанный с разработкой мощных средств компьютерного моделирования. Используемые модели представляли геометрии искривленного пространства-времени с помощью элементарных «кирпичиков», которые для удобства считали треугольными. Сетки из треугольных ячеек позволяют эффективно аппроксимировать искривленные поверхности, поэтому они часто используются в компьютерной анимации. В случае моделирования пространства-времени эти элементарные «кирпичики» представляют собой обобщения треугольников применительно к четырехмерному пространству и называются 4-симплексами. Точно так же как склеивание треугольников их ребрами позволяет создавать искривленные двухмерные поверхности, склеивание «граней» четырехмерных симплексов (представляющих собой трехмерные тетраэдры) позволяет создать модель четырехмерного пространства-времени.

Сами «кирпичики» не имеют прямого физического смысла. Если бы можно было рассматривать пространство-время под сверхмощным микроскопом, никаких треугольников видно бы не было. Они представляют собой лишь аппроксимации. Единственная информация, имеющая физический смысл, содержится в их коллективном поведении в представлении, что каждый из них уменьшился до нулевого размера. В этом пределе геометрия «кирпичиков» (будь они треугольными, кубическими, пятиугольными или представляют собой любую смесь данных форм) не имеет никакого значения.

Нечувствительность к разнообразным мелкомасштабным деталям часто называют универсальностью. Явление, хорошо известное в статистической физике, изучающей движение молекул в газах и жидкостях: молекулы ведут себя почти одинаково, каким бы ни был их состав. Универсальность ассоциируется со свойствами систем, состоящих из большого числа отдельных элементов, и проявляется в масштабе, гораздо большем масштаба отдельной составляющей. Аналогичное утверждение для стаи птиц состоит в том, что окраска, размер, размах крыльев и возраст отдельных птиц не имеют никакого отношения к поведению стаи как целого. В макроскопическом масштабе проявляются лишь очень немногие микроскопические детали.

Съеживание

C помощью компьютерных моделей исследователи квантовой гравитации начали изучать эффекты суперпозиции форм пространства-времени, не поддающиеся изучению методами классической теории относительности, в частности сильно искривленные на очень малых расстояниях. Этот так называемый не-возмущающий режим больше всего интересует физиков, но почти не поддается анализу без применения компьютеров.

ОПИСАНИЕ ФОРМЫ ПРОСТРАНСТВА

К сожалению, моделирование показало, что евклидова квантовая гравитация не позволяет учесть важные составляющие поведения. Все невозмущающие суперпозиции в четырехмерной вселенной оказались в принципе неустойчивыми. Квантовые флуктуации кривизны в малых масштабах, которые характеризуют различные наложенные вселенные, вносящие свои вклады в среднее, не компенсируют, а взаимно усиливают друг друга, заставляя все пространство съеживаться в маленький шар с бесконечным числом измерений. В таком пространстве расстояние между любыми двумя точками всегда остается очень малым, даже если его объем огромен. В некоторых случаях пространство обращается в другую крайность, становясь предельно тонким и протяженным, подобно полимеру с большим количеством ветвей. Ни одна из этих возможностей не похожа на нашу реальную Вселенную.

Прежде чем еще раз вернуться к допущениям, которые завели физиков в тупик, давайте рассмотрим одну странность полученного результата. «Кирпичики» четырехмерны, но в совокупности образуют либо пространство с бесконечным множеством измерений (съежившаяся вселенная), либо двухмерное пространство (вселенная-полимер). Как только допущение о больших квантовых флуктуациях вакуума выпустило джинна из бутылки, возникла возможность изменять самые фундаментальные понятия, например размерность. Возможно, классическая теория гравитации, в которой число измерений всегда считается определенным, не могла предвидеть такого результата.

Одно из следствий может несколько разочаровать любителей научной фантастики. Писатели-фантасты часто используют концепцию пространственно-временных туннелей, будто бы позволяющих сблизить между собой области, далеко отстоящие друг от друга. Они покоряют перспективной возможностью путешествий во времени и передачи сигналов со скоростью, превышающей скорость света. Несмотря на то что ничего подобного никогда не наблюдалось, физики допускают, что подобные туннели могут оказаться реабилитированными в рамках еще не созданной теории квантовой гравитации. В свете отрицательного результата компьютерного моделирования евклидовой квантовой гравитации возможность существования таких туннелей представляется крайне маловероятной. Пространственно-временные туннели имеют такое множество вариантов, что они должны преобладать в суперпозиции, делая ее неустойчивой, так что квантовая вселенная никогда не сможет вырасти за пределы маленькой, но очень сильно взаимосвязанной общности.

ПРИМЕНЕНИЕ КВАНТОВЫХ ПРАВИЛ К ПРОСТРАНСТВУ-ВРЕМЕНИ

В чем может быть корень бед? В поисках брешей и «свободных концов» евклидова подхода мы пришли к ключевой идее — одному компоненту, абсолютно необходимому для возможности приготовления нашего смешанного жаркого: код вселенной должен включать в себя принцип причинности, т.е. структура вакуума должна обеспечивать возможность однозначного различения причины и следствия. Причинность — неотъемлемая часть классических частной и общей теорий относительности.

В евклидову квантовую гравитацию причинность не включена. Определение «евклидова» означает, что пространство и время считаются равнозначными. Вселенные, входящие в евклидову суперпозицию, имеют четыре пространственных измерения вместо одного временного и трех пространственных. Поскольку евклидовы вселенные не имеют отдельного понятия времени, в них нет структуры, позволяющей располагать события в определенном порядке. У жителей таких вселенных не может быть понятий «причина» и «следствие». Хокинг и другие ученые, использующие евклидов подход, говорили, что «время мнимо» как в математическом, так и в разговорном смысле. Они надеялись, что причинность возникнет как макроскопическое свойство из микроскопических квантовых флуктуаций, не имеющих по отдельности признаков причинностной структуры. Однако компьютерное моделирование перечеркнуло их надежды.

СОВЕРШЕННО НОВОЕ ИЗМЕРЕНИЕ В ПРОСТРАНСТВЕ

ОБОБЩЕННЫЕ ОПРЕДЕЛЕНИЯ РАЗМЕРНОСТИ

Размерность по Хаусдорфу
Определение, сформулированное в начале XX в. немецким математиком Феликсом Хаусдорфом, исходит из зависимости объема V области от ее линейного размера r. В обычном трехмерном пространстве V пропорционально $r^3$. Показатель степени в этой зависимости и есть число измерений. «Объемом» могут считаться и другие показатели общего размера, например площадь. В случае прокладки Серпиньского V пропорционально $r^<1,5850>$. Это обстоятельство отражает тот факт, что данная фигура не заполняет всю площадь

Спектральная размерность
Данное определение характеризует распространение объекта или явления в среде в ходе времени, будь то капля чернил в сосуде с водой или заболевание в популяции. Каждая молекула воды или индивидуум в популяции имеют определенное число ближайших соседей, которое и определяет скорость диффузии чернил или распространения заболевания. В трехмерной среде размер чернильного облака растет пропорционально времени в степени 3/2. В прокладке Серпиньского чернила должны просачиваться сквозь извилистую форму, поэтому распространяются медленнее — пропорционально времени в степени 0,6826, чему соответствует спектральная размерность 1,3652

Применение определений
В общем случае разные способы вычисления размерности дают разные числа измерений, поскольку исходят из различных характеристик геометрии. Для некоторых геометрических фигур число измерений не постоянно. В часности диффузия может быть более сложной функцией, чем время в некоторой постоянной степени.
При моделировании квантовой гравитации упор делается на спектральную размерность. В один элементарный кирпичик модели квантового пространства-времени вводится малое количество некоей субстанции. Из этого кирпичика она распространяется случайным образом. Общее число кирпичиков пространства-времени, которых эта субстанция достигает за некоторый период времени, и определяет спектральную размерность

Читайте также:  Солнце оно одно во вселенной

Вместо пренебрежения причинностью при соединении отдельных вселенных в расчете на то, что она возникнет в результате коллективной мудрости суперпозиции, мы решили включить причинностную структуру на гораздо более раннем этапе. Свой метод мы назвали динамической триангуляцией. Мы приписали каждому симплексу стрелку времени, направленную из прошлого в будущее. Затем мы ввели причинностное правило «склейки»: два симплекса должны склеиваться таким образом, чтобы их стрелки были сонаправлены. Понятие времени в склеиваемых симплексах должно быть одинаковым: время с постоянной скоростью должно течь в направлении этих стрелок, никогда не останавливаясь и не обращаясь вспять. В ходе времени пространство должно сохранять свою общую форму, не распадаться на отдельные части и не создавать пространственно-временных туннелей.

Сформулировав эту стратегию в 1998 г., мы показали на крайне упрощенных моделях, что правила склейки симплексов ведут к макроскопической форме, отличной от евклидовой квантовой гравитации. Это обнадеживало, но не означало, что принятые правила склейки достаточны для обеспечения устойчивости всей четырехмерной вселенной. Поэтому мы затаили дыхание, когда в 2004 г. наш компьютер был почти готов дать нам первые расчеты причинностной суперпозиции четырехмерных симплексов. Будет ли это пространство-время вести себя на больших расстояниях как протяженный четырехмерный объект, а не как сморщенный шар или полимер?

Представьте себе наш восторг, когда число измерений расчетной вселенной оказалось равным 4 (точнее, 4,02 ± 0,1). Это был первый случай вывода числа измерений, равного наблюдаемому, из основных принципов. Сегодня ввод понятия причинности в модели квантовой гравитации является единственным известным способом справиться с неустойчивостями суперпозиции пространственно-временных геометрий.

Пространство-время в целом

Упомянутое моделирование было первым в продолжающейся серии вычислительных экспериментов, в ходе которых мы пытаемся вывести физические и геометрические свойства квантового пространства-времени посредством компьютерного моделирования. Нашим следующим шагом было исследование формы пространства-времени на больших расстояниях и проверка ее соответствия реальному миру, т.е. предсказаниям общей теории относительности. В случае невозмущающих моделей квантовой гравитации, не содержащих априорного предположения о форме пространства-времени, такая проверка очень трудна — настолько, что в большинстве подходов к квантовой гравитации, включая теорию струн, кроме частных случаев, достигнутые успехи недостаточны для ее проведения.

УГЛУБЛЕНИЕ В ПРОСТРАНСТВО-ВРЕМЯ

Как выяснилось, для того чтобы наша модель могла работать, необходимо с самого начала ввести так называемую космологическую постоянную — невидимую и нематериальную субстанцию, содержащуюся в пространстве даже при отсутствии каких-либо других форм материи и энергии. Такая необходимость стала хорошей новостью, так как космологи нашли экспериментальное подтверждение существования этой постоянной. Более того, полученная форма пространства-времени соответствовала геометрии де Ситтера, т.е. решению уравнений Эйнштейна для вселенной, не содержащей ничего, кроме космологической постоянной. Поистине замечательно, что составление ансамбля из микроскопических «кирпичиков» практически случайным образом — без каких либо предположений о симметрии или предпочтительной геометрической структуре — привело к пространству-времени, имеющему в больших масштабах высоко симметричную форму вселенной де Ситтера.

Динамическое возникновение четырехмерной вселенной практически правильной геометрической формы из основных принципов стало центральным достижением нашего моделирования. Вопрос о том, можно ли понять этот выдающийся результат в рамках представлений о взаимодействии неких еще не установленных «атомов» пространства-времени, и есть цель наших продолжающихся исследований. Поскольку мы убедились, что наша модель квантовой гравитации прошла ряд классических проверок, пришло время обратиться к экспериментам иного рода — выявлению отличительной квантовой структуры пространства-времени, которую классическая теория Эйнштейна выявить не смогла. В одном из таких экспериментов мы моделировали процесс диффузии: ввели в суперпозицию вселенных подходящий аналог чернильной капли и наблюдали, как она распространяется и возмущается квантовыми флуктуациями. Нахождение размера чернильного облака по прошествии некоторого времени позволяло нам определить число измерений в пространстве (см врезку).

Результат оказался ошеломляющим: число измерений зависит от масштаба. Иными словами, если диффузия продолжалась короткое время, то число измерений пространства-времени оказывалось иным, чем когда процесс диффузии шел долгое время. Даже те из нас, кто специализировался на квантовой гравитации, с трудом могли вообразить, как могло число измерений пространства-времени непрерывно изменяться в зависимости от разрешения нашего «микроскопа». Очевидно, пространство-время для малых объектов сильно отличается от такового для больших. Для малых объектов вселенная подобна фрактальной структуре — необычному виду пространства, в котором понятия размера просто не существует. Оно самоподобно, т.е. выглядит одинаковым во всех масшта-бах. Это значит, что не существует каких-либо объектов характеристического размера, которые могли бы служить чем-то вроде масштабной линейки.

Насколько мало это «малое»? Вплоть до размера около $10^<–34>$м квантовая вселенная в целом хорошо описывается классической четырехмерной геометрией де Ситтера, хотя с уменьшением расстояния роль квантовых флуктуаций возрастает. Тот факт, что классическое приближение остается пригодным вплоть до столь малых расстояний, удивителен. Из него вытекают очень важные следствия как для самых ранних этапов истории вселенной, так и для ее очень отдаленного будущего. В обоих этих пределах вселенная практически пуста. На самом начальном этапе квантовые флуктуации были столь велики, что материя едва обнаруживалась. Она была крошечным плотом в волнующемся океане. Через миллиарды лет после нас из-за быстрого расширения Вселенной вещество окажется настолько разреженным, что будет играть очень малую роль или даже вовсе не будет играть роли. Наш подход позволяет объяснить форму пространства в обоих предельных случаях.

ЧТО ТАКОЕ ПРИЧИННОСТЬ?

В еще меньших масштабах квантовые флуктуации пространствавремени возрастают настолько, что классические интуитивные представления о геометрии полностью теряют смысл. Число измерений уменьшается с классических четырех примерно до двух. Однако, насколько мы можем судить, пространство-время остается непрерывным и не содержит каких-либо туннелей. Оно не столь экзотично, как бурлящая пространственновременная пена, какой его видели физик Джон Уиллер (John Wheeler) и многие другие. Геометрия пространства-времени подчиняется необычным и неклассическим законам, но понятие расстояния остается применимым. Сейчас мы пытаемся проникнуть в область еще меньших масштабов. Одна из возможностей состоит в том, что все-ленная становится самоподобной и при всех масштабах, меньших некоторого предела, выглядит одинаково. Если так, то вселенная не состоит из струн или атомов пространства-времени, а является миром бесконечной скуки: структура, найденная чуть ниже порога, по мере углубления в область все меньших размеров будет просто до бесконечности повторять себя.

Как смогут физики обойтись меньшим числом составляющих и технических средств, чем использовали мы для построения квантовой вселенной с реалистическими свойствами, трудно представить. Нам еще предстоит провести много проверок и экспериментов, например для того чтобы понять поведение вещества во Вселенной и его влияние на ее общую форму. Наша главная цель, как в случае любой теории квантовой гравитации, состоит в предсказании поддающихся наблюдению следствий, выведенных из микроскопической квантовой структуры. Это будет решающим критерием правильности нашей модели как теории квантовой гравитации.

Перевод: И.Е. Сацевич

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

  • Deriving Dimensions. Adrian Cho in Physical Review Focus; September 28, 2004.
  • Planckian Birth of a Quantum de Sitter Universe. J. Ambjоrn, A. Gоrlich, J. Jurkiewicz and R. Loll in Physical Review Letters, Vol. 100, Article No. 091304; March 7, 2008. Есть препринт
  • The Complete Idiot’s Guide to String Theory. George Musser. Alpha, 2008.
  • The Emergence of Spacetime, or, Quantum Gravity on Your Desktop. R. Loll in Classical and Quantum Gravity, Vol. 25, No. 11, Article No. 114006; June 7, 2008. Есть препринт
  • Веб-сайт Ренаты Лолл

ОБ АВТОРАХ

Ян Амбьорн (Jan Ambjоrn), Рената Лолл (Renate Loll) и Ежи Юркевич (Jerzy Jurkewicz) разработали свой подход к проблеме квантовой гравитации в 1998 г. Амбьорн — член Королевской Датской академии, профессор института Нильса Бора в Копенгагене и Утрехтского университета в Нидерландах. Он известен как мастер тайской кухни — обстоятельство, которое издатели стремятся отметить в первую очередь. Рената Лолл занимает пост профессора Утрехтского университета, где она возглавляет одну из крупнейших в Европе групп, занимающихся исследованиями в области квантовой гравитации. Ранее работала в Институте физики гравитации Макса Планка в Гольме (Германия). В редкие часы досуга играет камерную музыку. Ежи Юркевич возглавляет отдел теории сложных систем в Физическом институте Ягеллонского университета в Кракове. В числе его прежних мест работы — Институт Нильса Бора в Копенгагене, где он был покорен красотой парусного спорта.

Источник

Adblock
detector