Квазар
Многие считают их огромными чёрными дырами, интенсивно всасывающими в себя всё, что их окружает. Вещество, приближаясь к ним, разгоняется и очень сильно разогревается. Под воздействием магнитного поля чёрной дыры частицы собираются в пучки, которые разлетаются от её полюсов. Этот процесс сопровождается очень ярким свечением. Есть версия, что квазары – это галактики в начале своей жизни, и фактически, мы видим их появление.
Яркость
Квазары имеют громадную мощность излучения. Она может превышать мощность излучения всех звёзд целой галактики в сотни раз. Мощь так велика, что объект, отдалённый от нас на миллиарды световых лет, мы можем увидеть в обычный телескоп.
Светимость может превышать светимость галактик в тысячи раз, а ведь последние состоят из миллиардов звёзд! Если сравнивать количество энергии, произведённое в единицу времени квазаром и Солнцем, то разница получится в 10 триллионов раз! А размер такого объекта может быть вполне сравним с объёмом Солнечной системы.
Возраст
Возраст этих суперобъектов определяется десятками миллиардов лет. Ученые вычислили: если сегодня соотношение квазаров и галактик 1 : 100000, то 10 млрд. лет назад оно было 1 : 100.
Расстояния до квазаров
Расстояния до удалённых объектов Вселенной определяются с помощью эффекта Доплера. Для всех наблюдаемых квазаров характерно сильное красное смещение, то есть, они удаляются. И скорость их удаления просто фантастическая. Например, для объекта 3С196 была вычислена скорость 200000 км/сек (две трети скорости света)! А расстояние до него около 12 млрд. световых лет. Для сравнения, галактики летят с максимальными скоростями «всего» в десятки тысяч км/сек.
Некоторые астрономы считают, что и потоки энергии от квазаров, и расстояния до них несколько преувеличены. Дело в том, что нет уверенности в методах изучения сверхдалёких объектов, за всё время интенсивных наблюдений не удалось достаточно определённо установить расстояния до квазаров.
Переменность
Настоящая загадка – переменность квазаров. Они изменяют свою светимость с необычайной частотой, у галактик таких изменений не бывает. Период изменений может исчисляться годами, неделями и сутками. Рекордом считается изменение блеска в 25 раз за один час. Эта переменность характерна для всех излучений квазара. Исходя из последних наблюдений, выясняется, что большая часть квазаров расположена возле центров громадных эллиптических галактик.
Изучая их, нам становится более понятной структура Вселенной и её эволюция.
Источник
Квазар — самый смертоносный объект во вселенной
Квазары являются самыми отдаленными и яркими объектами в известной нам Вселенной. В начале 60-х годов 20 века ученые определили квазары как радио-звезды, потому что их смогли обнаружить с помощью сильного источника радиоволн. На самом деле термин quasar произошел от слов «квазизвездный радиоисточник». Сегодня многие астрономы называют их QSOs в своих трудах. Как только мощность радио- и оптических телескопов стала намного выше было обнаружено что это не настоящие звезды, а вид еще неизвестных науке звездообразных объектов.
Знаете ли вы самый яркий квазар?
Самый яркий квазар известен под номером 3C 273 в Третьем Кембриджском каталоге радиоисточников. Сам квазар представляет собой объект примерно 13-й звездной величины, хотя, как и у многих других квазаров, его яркость периодически меняется.
Предполагают, что радиволны исходят не из самого квазара, а из лучей, окружающих его. Также обнаружили, что эти объекты расположены очень далеко, за пределами нашей Галактики. Квазары — это очень загадочные объекты. На сегодняшний день так точно неизвестно, чем же являются эти небесные тела. Единственно, что точно известно, что они выделяют огромное количество энергии. Их энергия может быть равна энергии трех миллионов солнц. Есть версия, что некоторые квазары излучают энергию в 10-100 раз больше, чем все звезды в нашей Галактике. Причем вся эта энергия производится на участке примерно равному Солнечной системе.
Квазары: далекие огни
Мы знаем, что квазары очень далеко от нас. Это самые далекие объекты от нас во всей Вселенной. И имеют самое большое инфракрасное излучение. Астрономы по спектральному анализу имеют возможность изучать скорость этих объектов и расстояние до них. Если цвета излучения квазара становятся более красными, значит объект движется от Земли, чем больше сдвиг спектра в сторону красного — тем дальше становится квазар и скорость его растет. Все квазары имеют такой сдвиг и движутся на очень высоких скоростях. Считается, что скорость некоторых из них достигает 240 тыс км/сек, что составляет почти 80% от скорости света.
Поскольку это самые отдаленные объекты из видимых во Вселенной, то мы видим их движение, которое происходило миллиарды лет назад — так долго их свет добирается до Земли. Видимо это не только самые отдаленные объекты, но и самые древние. Мы сейчас видим их такими, как они появились 10 миллиардов лет назад. Вполне возможно, что некоторые из них уже прекратили свое существование.
Что такое квазар?
Науке так точно и неизвестно, что же такое квазары. Однако большинство исследователей склоняется к версии, что это очень большие черные дыры, материя ускоряется тогда, когда воронка черной дыры затягивает её и частицы этой материи начинают нагреваться от трения друг об друга. Скорость частиц становится все больше и больше, и температура все выше и выше. Такое трение выделяет огромное количество света и другого вида излучений, такого как рентген. Черная дыра может поглощать массу, равную одному Солнцу в год. Как только эта масса будет поглощена, ее энергия разольется излучением вдоль северного и южного полюсов черной дыры. Ученые называют это явление космическим самолетом.
Еще одна версия происхождения квазаров говорит о том, что это очень молодые галактики. Процесс эволюции галактик мало изучен, и возможно квазары являются состоянием ранней стадии их образования. Тогда выплески энергии квазаров происходят из очень молодых ядер новых активных галактик. А некоторые ученые вообще считают квазары некими точками в пространстве, где берет начало новая материя во Вселенной. Такая противоположность черным дырам. Но это всего лишь гипотеза. Нужно еще много времени, чтобы понять суть этих странных объектов.
Первый обнаруженный квазар имел название 3c273 и был расположен в стороне созвездия Девы. Его обнаружил Мэтью Сэндидж в 1960 году. Он видимо связан с другими 16-ти звездами созвездия. Три года спустя было замечено, что объект имеет очень большое красное смещение по спектру. Истинный характер объекта, доказывающий, что это не обычная звезда, а что то другое, был выявлен, когда ученые обнаружили выделение энергии им на относительно небольшом участке.
Сегодня квазары определяются прежде всего по красному смещению их спектра. Если обнаруженный в космосе объект имеет такое смещение и выделяет огромное количество энергии, он становится главным кандидатом носить имя квазар. Сегодня их определено в количестве около 2-х тысяч. Космический телескоп Хаббл является главным инструментом их изучения. Поскольку технический прогресс движется вперед, есть шанс в будущем узнать истинную природу квазаров.
Найдены дубликаты
Постигнет, конечно. Вопрос времени.
Черные дыры давно обнаружены.
Все еще впереди. Но известно уже многое. В Вики про них отличная статья.
название. почему же квазар смертоносен? для кого смертоносен? Скорее всего не для нас, ведь это самые далеко удалённые объекты. Бетельгейзе и та опаснее. Хотя и не опасна в абсолютном значении.
Любопытно, но в быту малоприменимо.
Стиль изложения просто *издец!
Как будто писал пятиклассник.
Рождение новой галактики
Представленное изображение было опубликовано на сайте миссии «Хаббл». Снимок демонстрирует объект дальнего космоса, известный под обозначением IC 1623. Он расположен на расстоянии 275 млн световых лет от Земли в созвездии Кита.
Внешний вид IC 1623 способен сбить с толку. Объект не обладает упорядоченной структурой и представляет собой конгломерат из звезд, газовых облаков и остатков спиральных рукавов. Все дело в том, что перед нами последствия «галактического ДТП»: IC 1623 образовался в результате слияния двух галактик.
На данный момент IC 1623 находится в финальной стадии слияния. В ближайшее (по астрономическим меркам) время вновь образованная галактика должна будет приобрести более упорядоченный внешний вид. Кроме того, IC 1623 ждет мощный «фейерверк».
Гравитационное взаимодействие привело к уплотнению газовых облаков, что резко ускорило темпы звездообразования. Новая галактика начнет рождать светила с очень высокой скоростью. Наиболее массивные из них завершат свою жизнь ослепительными вспышками сверхновых.
Открыты три новые тусклые карликовые галактики
Анализируя данные, собранные при помощи обзора неба Dark Energy Survey (DES), международная команда астрономов произвела поиски близлежащих тусклых карликовых галактик. В результате было обнаружено три таких объекта в окрестностях галактики Скульптор.
Содержащие до нескольких миллиардов звезд, карликовые галактики с трудом поддаются обнаружению по причине низкой светимости, малой массы и крохотного размера, и часто они являются спутниками более крупных галактик. Учитывая тот факт, что эволюция в таких карликовых галактиках протекает почти без внешнего влияния, изучение данных объектов может помочь глубже понять процессы формирования звезд в галактиках.
Расположенная на расстоянии примерно в 12 миллионов световых лет от нас, галактика Скульптор (также известная как NGC 253) представляет собой спиральную галактику среднего размера, лежащую на небе в направлении созвездия Скульптор. Радиус этой галактики оценивается примерно в 86 000 световых лет, и в настоящее время в галактике протекает период интенсивного звездообразования.
Галактика NGC 253 является одной из самых близких к нам спиральных галактик, и поэтому хорошо подходит для поиска новых карликовых галактик с низкой поверхностной яркостью. Команда астрономов под руководством Дэвида Мартинеса-Делгадо (Martínez-Delgado) из Андалузского института астрофизики, Испания, в новой работе изучила галактику NGC 253 и ее космические окрестности для обнаружения новых карликовых галактик этого типа.
В результате визуального анализа снимков, сделанных при помощи обзора неба Dark Energy Survey, исследователи смогли обнаружить три тусклых карликовых сфероидальных галактики. Эти вновь обнаруженные карликовые галактики, получившие обозначения Донатьелло (Do) II, III и IV, имеют значения абсолютных звездных величин в диапазоне от -7 до -9, что типично для карликовых галактик-спутников местной Вселенной.
Согласно авторам, галактики Do II, III и IV имеют эффективные радиусы соответственно в 323, 495 и 596 световых лет. Центральная поверхностная яркость этих галактик является крайне низкой, составляя от 25 до 26 единиц звездной величины на угловую секунду в квадрате в g-диапазоне.
Астрономы полагают, что галактики Do II, III и IV являются спутниками галактики NGC 253, однако для подтверждения этой гипотезы требуются дополнительные наблюдения.
Источник
Квазары
Самое интересное в науке – находить нечто необычное. Сначала ученые вообще не понимают, с чем столкнулись и тратят десятилетия, а иногда и века, чтобы разобраться в возникшем явлении. Так и было с квазаром.
В 1960-х годах земные телескопы столкнулись с загадкой. От Солнца, галактики и некоторых звезд приходили радиоволны. Но были найдены и необычные источники, ранее не наблюдавшиеся. Они были крошечными, но невероятно яркими.
Их назвали квазизвездными объектами («квазары»). Но наименование не объяснило природу и причину появления. На начальных этапах удалось лишь узнать, что они двигаются от нас на 1/3 скорости света.
Квазары – невероятно интересные объекты, потому что своим ярким сиянием способны затмить целые галактики. Это далекие формирования, подпитывающиеся от черных дыр, и в миллиарды раз массивнее Солнца.
Это иллюстрация квазара подобного APM 08279+5255, в котором было найдено огромное количество водяного пара. Скорее всего, газ и пыль формируют выступ вокруг центральной части
Первые полученные данные о количестве поступающей энергии повергли ученых в настоящий шок. Многие не могли поверить в существование подобных объектов. Скептицизм заставил их искать другое объяснение происходящему. Некоторые думали, что красное смещение не указывает на удаленность и связано с чем-то другим. Но последующие исследования отбрасывали альтернативные идеи, из-за чего пришлось согласиться, что перед нами – действительно одни из ярчайших и удивительных вселенских объектов.
Изучение началось в 1930-х годах, когда Карл Янски понял, что статистические помехи в трансатлантических телефонных линиях происходили от Млечного Пути. В 1950-х гг. ученые использовали радиотелескопы, чтобы изучить небо, и объединить сигналы с видимым наблюдением.
Удивляет и то, что источников для такого энергетического запаса у квазара не так уж и много. Наилучший вариант – сверхмассивная черная дыра. Это определенный участок в пространстве, обладающий такой сильной гравитацией, что даже световым лучам не удается вырваться за его пределы. Малые черные дыры создаются после гибели массивных звезд. Центральные по массе достигают миллиардов солнечных. Удивляет еще один момент. Хотя это невероятно массивные объекты, по радиусу могут достигать Солнечной системы. Никто не может понять, как формируются такие сверхмассивные черные дыры.
Иллюстрация квазара и черной дыры, похожей на APM 08279+5255, где было замечено много водяного пара. Скорее всего, пыль и газ формируют тор вокруг черной дыры
Вокруг черной дыры вращается огромное газовое облако. Как только газ оказывается в черной дыре, его температура поднимается до миллионов градусов. Это заставляет его создавать тепловое излучение, делая квазар таким ярким в видимом спектре, как и в рентгеновском.
Но есть граница, именуемая пределом Эддингтона. Этот показатель зависит от массивности черной дыры. Если попадает большое количество газа, то создается сильное давление. Оно притормаживает газовый поток, сохраняя яркость квазара ниже черты Эддингтона.
Вам нужно понимать, что все квазары удалены от нас на значительные дистанции. Самый близкий расположен в 800 миллионах световых лет. Так что, можно сказать, что в современной Вселенной их уже не осталось.
Что с ними случилось? Никто точно не знает. Но, если основываться на источнике питания, то, скорее всего, все дело в том, что запас топлива подошел к нулю. Газ и пыль в диске закончились, и квазары не могли больше светить.
Квазары — Дистанционные огни
Если мы говорим о квазаре, то следует объяснить, что такое пульсар. Это быстро вращающаяся нейтронная звезда. Она создается в процессе разрушения сверхновой, когда остается сильно уплотненное ядро. Его окружает мощное магнитное поле (превышает земное в 1 триллион раз), которое заставляет объект вырабатывать заметные радиоволны и радиоактивные частицы из полюсов. Они вмещают в себя разнообразные типы излучения.
Гамма-пульсары воспроизводят влиятельные гамма-лучи. Когда нейтронный тип поворачивается к нам, мы замечаем радиоволны всякий раз, когда на нас указывает один из полюсов. Это зрелище напоминает маяк. Этот свет будет мелькать с разной скоростью (влияют размер и масса). Иногда случается так, что у пульсара появляется двоичный спутник. Тогда он может вторгаться в материю компаньона и учащать свое вращение. В быстром темпе способен пульсировать 100 раз в секунду.
Что же такое квазар?
Точного определения для квазара пока нет. Но последние сведения говорят, что квазары могут создаваться сверхмассивными черными дырами, которые поглощают вещество в аккреционном диске. С ускорением вращения она нагревается. Столкновения частичек создают большое количество света и передают его прочим формам излучения (рентгеновские лучи). Черная дыра в таком положении будет питаться веществом, равным солнечному объему за год. При этом значительное количество энергии будет выброшено из серверного и южного полюса дыры. Это называется космическими струями.
Хотя есть вариант, что перед нами молодые галактики. Так как о них известно мало, то квазар может представлять собою всего лишь раннюю стадию выброшенной энергии. Некоторые считают, что это отдаленные пространственные пункты, где новая материя поступает во Вселенную.
Поиск квазаров
Первый найденный квазар назвали 3C 273 (в созвездии Девы). Его нашли Т. Мэттьюс и А. Сэнджиджем в 1960 году. Тогда казалось, что он относится к 16-й звезде, подобной объекту. Но через три года заметили, что у него обнаружился серьезное красное смещение. Ученые догадались в чем дело, когда поняли, что интенсивная энергия производится на небольшой площади.
Квазар 3C 273 в созвездии Девы
Сейчас квазары находят благодаря красному смещению. Если видят, что у объекта оно высокое, то он заносится в список претендентов. На сегодняшний день их насчитывают более 2000. Главный инструмент поиска – космический телескоп Хаббла. С развитием технологий мы сможем раскрыть все тайны этих загадочных вселенских огоньков.
Световые струи в квазарах
Ученые думают, что точечные проблески – сигналы из галактических ядер, затмевающие галактики. Квазары можно найти только в галактиках, располагающих сверхмассивными черными дырами (миллиард солнечных масс). Хотя свет не способен вырваться из этого места, некоторые частицы пробиваются возле краев. Пока пыль и газ всасываются в дыру, другие частички отдаляются практически на скорости света.
Большую часть квазаров во Вселенной обнаружили на отдалении в миллиарды световых лет. Не будем забывать, что у света уходит время, чтобы добраться к нам. Поэтому, изучая подобные объекты, мы как будто возвращаемся в прошлое. Многие из 2000 найденных квазаров существовали еще в начале галактической жизни. Квазары способны генерировать энергию до триллиона электро-вольт. Это больше, чем количество света всех звезд в галактике (ярче свечения Млечного пути в 10-100000 раз).
Типы квазаров
Квазары входят в класс «активных ядер галактик». Среди прочих можно также заметить сейфертовские галактики и блазары. Каждый из них нуждается в сверхмассивной черной дыре для подпитки.
Сейфертовские уступают по энергии, создавая лишь 100 кэВ. Блазары потребляют намного больше. Многие полагают, что эти три типа – один и тот же объект, нов разных перспективах. Струи квазаров текут под углом в направлении Земли, на что способны также и блазары. У сейфертовских струи не видны, но есть предположение, что их эмиссия направлена не на нас, поэтому не замечается.
Квазары демонстрируют раннюю структуру галактик
При помощи сканирования древнейших вселенских объектов, ученым удается понять, как выглядел Млечный Путь во времена своей молодости.
Атакамская большая решетка миллиметрового диапазона способна запечатлеть «младенческое» состояние галактик, подобных нашей, отобразив момент, когда звезды только родились. Это удивительно, ведь они возвращаются в период, когда Вселенная по возрасту достигала всего 2 миллиардов лет. То есть, мы буквально смотрим в прошлое.
Наблюдая за двумя древними галактиками в инфракрасных длинах волн, ученые заметили, что в раннем периоде развития присутствуют нечто, напоминающее удлиненные диски водородного газа, превосходящие намного меньшие внутренние области звездообразования. Кроме того, они уже обладали вращающими газовыми и пылевыми дисками, а звезды появлялись в довольно быстрых темпах: 100 солнечных масс в год.
Изучаемые объекты: ALMA J081740.86+135138.2 и ALMA J120110.26+211756.2. В наблюдениях помогли квазары, чей свет поступал с заднего плана. Речь идет о сверхмассивных черных дырах, вокруг которых сосредоточены яркие аккреционные диски. Полагают, что они играют роль центров активных галактик.
Квазар на удаленности в 12.5 миллиардов световых лет сияет возле молодой галактики (12 миллиардов световых лет). Приборы ALMA уловили ионизированный углерод (зеленый) и диск с формированием звезд (синий)
Квазары светят намного ярче галактик, поэтому если они расположены на фоне, то галактика теряется из виду. Но наблюдение ALMA позволяет зафиксировать инфракрасный свет, исходящий от ионизированного углерода, а также водород в сиянии квазаров. Анализ показывает, что углерод создает свечение на длине волны в 158 микрометров и характеризует галактическую структуру. Места рождения звезд можно найти благодаря инфракрасному свету от пыли.
Ученые заметили еще один момент в светящемся углероде – его расположение было смещено по отношению к газообразному водороду. Это намек на то, что галактические газы отходят предельно далеко от углеродного участка, а значит, у каждой галактики можно найти большой водородный ореол.
При осмотре объектов переднего плана, исследователи ожидали запечатлеть слабый выброс над квазаром. Но вместо этого заметили две ярких галактики на большой удаленности от квазара.
Художественная интерпретация «детской» галактики, похожей на Млечный Путь, с ярким квазаром, излучающим сияние в газообразном водороде
Анализ также подтвердил, что молодые галактики уже запустили процесс вращения. А это один из признаков принадлежности к спиральному типу. Этот проект стартовал в 2003 году, когда только разрабатывалась идея использования спектров квазаров для идентификации галактик на переднем плане. Этот механизм именуют демпфированной системой Лайман-альфа, из-за того, что водородный газ не дает определить длину волн света от квазара.
ALMA помогла, наконец, разобраться в процессе формирования галактик. Теперь понятно, что некоторые из ранних обладали ореолами, оказавшиеся намного шире, чем предполагали. Они могут предоставлять материал для галактического роста.
Источник