Меню

Летательные аппараты для освоения космоса

На крыльях в космос: история космопланов

История работ над проектами различных многоразовых авиационно-космических систем насчитывает не один десяток лет. В апреле 1981 года состоялся первый полет на орбиту американского Space Shuttle, а чуть позже в космос полетел крылатый «Буран».

Сегодня многие связывают развитие пилотируемой программы именно с созданием космопланов. Обсуждаются такие проекты и у нас в стране. Тем более, что Россия обладает для этого отличным техническим заделом – успешно реализованной программой «Энергия-Буран».

Космический взлет «по-самолетному»

Практически сразу после первых полетов в космос появилась идея использования крылатых космических кораблей. Разработка самолетов, способных подниматься на большие высоты и выходить в космос, началась еще раньше – в конце 1950-х годов. Первым таким реализованным проектом стал американский гиперзвуковой самолет-ракетоплан North American X-15. Считается, что в 1959 году он взлетел так высоко, что оказался в космическом пространстве.

Впрочем, здесь следует уточнить, что этот факт во многом зависит от того, что именно понимать под космосом. По американским стандартам North American X-15 и его пилоты побывали в космосе 13 раз, потому что именно столько раз они поднимались на высоту более 80 км. По международным законам – только два раза, потому что согласно Международной авиационной федерации (ФАИ) космическим считается полет на высоте от 100 км над уровнем моря. При таких условиях летательный аппарат может стать искусственным спутником планеты, то есть крутиться по орбите вокруг Земли. Спутникам, как известно, крылья не нужны, а вот космическому кораблю они бы не помешали. Так посчитали специалисты NASA и в октябре 1968 года с идеей создания такого корабля обратились к американским космическим компаниям.

Считалось, что многоразовая космическая система в первую очередь позволить значительно снизить расходы на каждый пуск и стоимость полезного груза, выведенного на орбиту. В США началась работа над созданием многоразовой системой, которая получила название «Спейс шаттл» (Space Shuttle).

Первым прототипом «Спейс шаттла» стал «Энтерпрайз», названный так в честь корабля из популярного фантастического сериала Star Trek. Как и корабль из сериала, шаттл «Энтерпрайз» в настоящий космос не полетел, но позволил провести важные испытания на Земле.


Пуск «Колумбии». Фото: NASA / wikipedia.org

Первым действующим космическим челноком стала «Колумбия», чей полет состоялся 12 апреля 1981 года. В этом фактически испытательном пуске, рискуя жизнью, приняли участие два астронавта. Тогда все сложилось удачно. Трагедия с «Колумбией» случилась гораздо позже – в 2003 году на 28 пуске. При крушении погибли семь членов экипажа. Такая же судьба была и у второго космического челнока – «Челленджера». Он выдержал девять пусков, а в 1986 году при своем десятом запуске разбился с восемью астронавтами на борту.

Последний полет по программе «Спейс Шаттл» состоялся в 2011 году. Всего за 30 лет использования шаттлы совершили 135 космических путешествий. Каждая такая поездка обходилась в немаленькую сумму – от 500 млн до 1,3 млрд долларов, а каждый килограмм «космического багажа» стоил около 15 тыс. долларов. В то же время наша одноразовая ракета «Союз» выводила в космос грузы по цене примерно в два-три раза дешевле. Программа «Спейс Шаттл» планировалась как коммерчески выгодная, а в итоге стоимость доставки грузов на орбиту на американских шаттлах оказалась самой высокой за всю историю космических полетов.

«Буран», опередивший время

Неудивительно, что космическая гонка между США и СССР не смогла обойти идею многоразовых космических систем. Наблюдая за деятельностью американских коллег, советские конструкторы обсуждали этот вопрос на самом высоком уровне. Идею крылатых космических кораблей активно продвигало ОКБ-52 во главе с Владимиром Николаевичем Челомеем. В Кремле они представляли свои предложения по созданию космоплана для полета к Марсу и Венере, а также разработке пилотируемых и беспилотных ракетопланов для околоземных полетов.

Читайте также:  Геоцентрическая модель космоса это

При этом сама идея возвращения из космоса на крыле находила поддержку не у всех конструкторов. К примеру, Сергей Павлович Королев допускал, что крылатый космоплан может быть незаменимым, например, при посадке на Марс. Но что касается околоземных полетов, то «дорого таскать крылья в космос».

Тем не менее в СССР в 1973 году началась разработка многоразовой космической системы «Энергия-Буран». Специально для реализации программы было создано НПО «Молния» (с 2018 года это объединение входит в группу компаний «Калашников» и продолжает работы по авиационно-космической тематике). Главным конструктором «Молнии» был назначен Глеб Евгеньевич Лозино-Лозинский, до этого занимавшийся проектом «Спираль», в рамках которого разрабатывался орбитальный самолет. «Спираль» не получила поддержки у советского руководства и Лозино-Лозинского переориентировали на создание «Бурана».

Г.Е. Лозино-Лозинский (третий слева) показывает процесс сборки «Бурана» правительственной делегации

Работу над «Бураном» можно назвать самой масштабной космической стройкой в истории страны. В ней приняли участие более тысячи предприятий, многие из которых сегодня входят в состав Ростеха. В программе «Буран» большую роль играл Летно-исследовательский институт им. М.М. Громова (ЛИИ им. Громова), входящий сейчас в Объединенную авиастроительную корпорацию (ОАК). Здесь испытывалась автоматическая система управления, принципиально отличающая «Буран» от челноков пилотируемых человеком.

НПО «Молния» совместно с НПО «Энергия» и ЛИИ им. Громова разработали и построили летно-моделирующие стенды, пункт управления летным экспериментом, несколько летающих лабораторий. Атмосферный участок полета «Бурана» отрабатывался на созданной в НПО «Молния» летающей лаборатории БТС-002 – полноразмерной копии орбитального космического корабля с дополнительными турбореактивными двигателями. Более 20 полетов на БТС-002 как в ручном, так и в полностью автоматическом режиме были выполнены летчиками-испытателями ЛИИ им. Громова.

Остекление кабины и композитные детали «Бурана» были изготовлены на ОНПП «Технология». Тогда специалистами предприятия был изобретен инновационный материал гравимол, способный выдержать до +1650 °С. Можно сказать, что участие «Технологии» в проекте «Энергия-Буран» заложило основы композитного производства у нас в стране.

Кабина «Бурана» разрабатывалась специалистами Экспериментального машиностроительного завода им. В.М. Мясищева, который сегодня входит в Объединенную авиастроительную корпорацию (ОАК). Здесь же была предложена и создана уникальная система ВМ-Т для транспортировки планера космического челнока и крупногабаритных агрегатов по проекту «Энергия-Буран». В течении нескольких лет транспортные самолеты ВМ-Т «Атлант» совершили более 150 полетов, обеспечивая проведение наземных испытаний, а затем и сам космический полет.

Уникальная парашютная система космоплана была создана в НИИ парашютостроения (холдинг «Технодинамика» ). Специалистами НИИ авиационного оборудования (ныне в составе КРЭТ ) были разработаны комплексы приборной панели корабля, а посадку «Бурана» обеспечили системы производства другого предприятия КРЭТ – «Аэроприбор-Восход».


Приземление «Бурана» на аэродроме Юбилейный 15 ноября 1988 г.

В результате, 15 ноября 1988 года с космодрома Байконур ракета-носитель «Энергия» вывела космический корабль на околоземную орбиту. «Буран» два раза обогнул планету и приземлился на аэродроме «Юбилейный». Визуально посадка «Бурана» ничем не отличалась от приземления американских челноков. Однако «Буран» произвел свой полет и посадку полностью в автоматическом режиме – советским «шаттлом» управлял не экипаж, а бортовой вычислительный комплекс. Автоматический полет «Бурана» попал на страницы Книги рекордов Гиннесса и до сих пор этот рекорд не побит. К сожалению, первый полет «Бурана» стал и последним.

Подробно о том, как развивалась программа «Энергия-Буран» и чем она удивила весь мир, читайте в этой статье .

Планы для космоплана

На заре создания многоразовых авиационно-космических систем их основным назначением считался менее затратный и более оперативный по сравнению с одноразовыми ракетами доступ в космос. Но, как оказалось, проектирование такой технически сложной системы весьма затратно, да и эксплуатация не всегда экономически выгодна.

Читайте также:  Это загадочный космос поделки своими руками

В наши дни современные технологии могут предоставить новые возможности космическому взлету «по-самолетному». Это не только организация доставки грузов на орбиту и обратно на Землю. Рассматриваются такие возможности, как трансконтинентальные перелеты, а также развитие космического туризма с пребыванием на орбите в течение нескольких дней и возвращением на аэродром вылета.


фото: Ralf Manteufel / wikimedia.org

Создание авиационно-космических систем сможет стать своего рода платформой для реализации прорывных решений. Проект такого масштаба способен аккумулировать в себе практически весь научный и промышленный потенциал страны с последующим внедрением новых технологий во многих секторах экономики. Такой была и программа «Энергия-Буран», в ходе выполнения которой была создана разнообразная номенклатура военных и гражданских разработок. Сотни этих решений нашли применение в различных сферах. К примеру, системы автоматического пилотирования, разработанные для космоплана, используются в современных истребителях и беспилотниках. Ну и, конечно, они могут стать базой при разработке нового российского космоплана – тема многоразовых крылатых космических кораблей продолжает развиваться.

События, связанные с этим

Телескоп «ТАЛ-Вега»: расширяя горизонты

От ракеты до «Кометы»: самые знаковые проекты «Технологии»

Источник

Космические летательные аппараты

Первые спутники

Для совершения межпланетных странствий всвое время понадобилось создание мощных, современных ипрочных машин, которые моглибы преодолеть нетолько силу притяжения нашей планеты, ноиразличные неблагоприятные условия окружающей среды межпланетного пространства. Для преодоления силы притяжения нашей планеты летательному аппарату требуется скорость свыше одиннадцати километров всекунду. Преодолевая силы притяжения Земли, действующие нанего вполете, аппарат выходит воткрытый космос— межпланетное пространство.

Ноздесь космос только начинается. Далее нужно преодолеть силу притяжения Солнца ивыйти из-под его «власти», для этого понадобится средняя скорость движения свыше шестнадцати километров всекунду. Так летательный аппарат выходит иззоны влияния Солнца ипопадает вмежзвездное пространство. Однако иэто непредел, ибо размеры космоса безграничны, как безграничны размеры человеческого сознания. Чтобы продвинутся дальше, аименно выйти вмежгалактическое пространство, нужно развить скорость свыше пятисот километров всекунду.

Первым спутником нашей планеты стал «Спутник-1», запущенный Советским Союзом сцелью изучения космического пространства вокруг Земли. Это был прорыв всфере изучения космоса. Благодаря запуску первого спутника была подробно изучена собственная атмосфера Земли, атакже окружающее еекосмическое пространство. Самым быстрым исамым далеким космическим аппаратом поотношению кнашей планете насегодняшний день является спутник «Вояджер-1». Онисследует Солнечную систему иееокрестности уже сорок лет. Заэти сорок лет были собраны бесценные данные, которые могут послужить хорошим плацдармом для научных открытий будущего.

Одним изприоритетных направлений науки всфере изучения космоса является исследование Марса. Что касается полета наэту планету, топока такая идея остается лишь набумаге, хотя работы веенаправлении ведутся. Путем проб иошибок, анализа отказов космических летательных аппаратов ученые пытаются найти максимально комфортный вариант полета наМарс. Еще очень важно, чтобы внутри корабля для экипажа были созданы самые безопасные условия. Одной изглавных проблем сегодня является электризация космического корабля вовремя высоких скоростных режимов, что создает опасность возгорания. Новсе равно, даже несмотря наэто, жажда человека кпознанию космоса неугасаема. Обэтом говорит огромный список межпланетных путешествий, осуществленных насегодняшний день.

Запуски космических аппаратов в 2017 году

Список запусков космических аппаратов в году весьма велик. Лидером всписке запусков космических аппаратов,конечно, является Америка, как флагман научных исследований вобласти изучения космоса, однако идругие страны также неотстают. Истатистика запусков положительна, завесь год неудачных запусков было всего лишь три.

Исследование Луны космическими аппаратами

Конечноже, самым привлекательным объектом исследований человека всегда была Луна. В1969 году человек впервые ступил наповерхность Луны. Ученые, которые занимались изучением планеты Меркурий, утверждают, что Луна иМеркурий похожи пофизическим характеристикам. Снимок, сделанный космическим аппаратом сорбиты Сатурна, показывает, что Луна выглядит как светлая точка посреди безграничного мрака космоса.

Читайте также:  Русские ученые изучающие космос

Космические аппараты России

Большая часть нынешних космических аппаратов России— это советские летательные аппараты многоразового использования, которые были запущены вкосмос еще вовремена СССР. Однако исовременные летательные аппараты вРоссии также добиваются успеха висследования космического пространства. Российские ученые планируют множество полетов кповерхности Луны, Марса иЮпитера. Наибольший вклад визучение Венеры, Луны иМарса совершили советские научно-исследовательские станции содноименными названиями. Ими совершено великое множество полетов, результатами которых стали бесценные фото ивидеоматериалы, замеры температуры, давления, изучение атмосферы этих планет итд.

Классификация космических аппаратов

Попринципу работы испециализации космические аппараты делятсяна:

  • искусственные спутники планет;
  • космические станции для межпланетных исследований;
  • планетоходы;
  • космические корабли;
  • орбитальные станции.

Спутники земли, орбитальные станции икосмические корабли предназначены для исследований Земли ипланет солнечной системы. Космические станции предназначены для исследований запределами Солнечной системы.

Спускаемый аппарат космического корабля «Союз»

«Союз»— это пилотируемый космический корабль снаучной аппаратурой наборту, бортовой аппаратурой, возможностью связи между космическим аппаратом иземлей, наличием энергопреобразующей аппаратуры, телеметрической системой, системой ориентации истабилизации имногими другими системами иприборами для проведения научно-исследовательской работы ижизнеобеспечения экипажа. Спускаемый аппарат корабля «Союз» имеет внушительный вес— от2800 до2900кг взависимости отмарки корабля. Один изминусов корабля— высокая вероятность выхода изстроя радиосвязи инераскрытые панели солнечных батарей. Ноэто исправили вболее поздних версиях корабля.

История космических аппаратов серии «Ресурс-Ф»

История серии «Ресурса» берет свое началов 1979году. Это серия космических аппаратов для ведения фото ивидео съемки вкосмическом пространстве, атакже для картографических исследований поверхности Земли. Информация, получаемая спомощью космических аппаратов серии «Ресурс-Ф», применяется вкартографии, геодезии, атакже для контроля сейсмической активности коры Земли.

Малые космические аппараты

Искусственные спутники, имеющие небольшие размеры, рассчитаны нарешение простейших задач. Отом, как они используются икакую роль играют визучении космоса иповерхности земли известно немало. Восновном ихзадача— мониторинг иисследования поверхности Земли. Классификация малых спутников зависит отихмассы. Разделяют:

  • миниспутники;
  • микроспутники;
  • наноспутники;
  • пикоспутники;
  • фемтоспутники.

Взависимости отразмера имассы спутника определяется его задача, нотак или иначе все спутники данной серии исполняют задачи поисследованиям поверхности Земли.

Электроракетный двигатель для космических аппаратов

Суть работы электродвигателя впреобразовании электрической энергии вкинетическую. Электроракетные двигатели делятсяна: электростатические, электротермические, электромагнитные, магнитодинамические, импульсные, ионные. Ядерный электродвигатель открывает возможности полета кдалеким звездам ипланетам засчет своей мощности. Двигательная установка преобразует энергию вмеханическую, что позволяет развить скорость, необходимую для преодоления силы земного притяжения.

Проектирование космических аппаратов

Разработка систем космических аппаратов зависит от задач, которые наэти аппараты возлагаются. Ихдеятельность может охватывать весьма разные сферы деятельности— отнаучно-исследовательских дометеорологических ивоенно-разведывательных. Проектирование иснабжение аппаратов определенными системами ифункциями происходит взависимости отпоставленных перед ними задач.

Космический аппарат «Кассини»

Навесь мир известны имена этих разведчиков тайн Вселенной— «Юнона», «Метеор», «Розетта», Галилео«, «Феникс», «Пионер», «Юбилейный», «Dawn»(Доун), » Акацуки«, «Вояджер», «Магеллан», «Асе», «Тундра», «Буран», «Русь», «Улисс», «Нивелир-ЗУ«(14ф150), «Genesis», «Викинг», «Вега», «Луна-2», «Луна-3», «Soho», «Меридиан», «Стардаст», «Джемини-12», «Спектр-РГ» , «Горизонт», «Федерация», серия аппаратов «Ресурс-П» имногие другие, список можно продолжать бесконечно. Благодаря собранной ими информации, мыможем открывать все новые иновые горизонты.

Неменее качественный иуникальный космический аппарат «Cassini» был запущен вдалеком году идвадцать лет служил наблаго человечества. Его прерогатива— изучение далекого изагадочного «властелина колец» нашей Солнечной системы— Сатурна. Всентябре этого года аппарат завершил свою почетную миссию путеводной звезды человечестваи, как иположено падающей звезде, сгорел вполете дотла, некоснувшись родной Земли.

Источник

Adblock
detector