«Вояджер»: самый быстрый космический аппарат во Вселенной
19 января 2006 года земляне запустили зонд «Новые горизонты» — автоматическую межпланетную станцию, которая должна будет изучить Плутон, Харон и объект в поясе Койпера. Полная миссия аппарата рассчитана на 15—17 лет. Окрестности Земли «Новые горизонты» покинул с самой большой скоростью среди известных космических аппаратов — 16,26 км/с относительно Земли. Гелиоцентрическая скорость — 45 км/с, что позволило бы аппарату уйти из Солнечной системы без гравитационного маневра. Однако есть в этой Вселенной аппарат, созданный руками человека, который летит еще быстрее и равных ему в скорости пока нет.
Два космических зонда Voyager побили все рекорды по пройденным расстояниям. Они отправили нам фотографии Юпитера, Сатурна и Нептуна и продолжают двигаться прочь из Солнечной системы. 22 февраля 2014 года «Вояджер-1» находился на расстоянии около 19 миллиардов километров от Земли и по-прежнему отсылает нам данные — 10 часов они идут от зонда к нашей планете. Несколько лет назад мы писали, что «Вояджер-1» покинул Солнечную систему. Как зондам удается передавать данные так далеко?
Космический корабль «Вояджер» использует 23-ваттный радиопередатчик. Это больше, чем у обычного мобильного телефона, но в общем порядке вещей этот передатчик достаточно маломощный. Большие радиостанции на Земле передают десятки тысяч ватт, но все равно сигнал достаточно слабый.
Ключом к успеху, благодаря которому сигнал будет доходить вне зависимости от мощности радиопередатчика, стала комбинация трех вещей:
- Очень большие антенны.
- Направленные друг на друга антенны (земная и вояджеровская).
- Радиочастоты с малым количеством помех.
Антенны, которые использует «Вояджер», достаточно велики. Вы наверняка видели спутниковые тарелки у любителей телевидения. Обычно они 2—3 метра в диаметре. У антенны «Вояджера» диаметр 3,7 метра, и она передает данные, которые принимает 34-метровая антенна на Земле. Антенна «Вояджера» и антенна Земли направлены прямо друг на друга. Всенаправленная маленькая антенка вашего телефона и 34-метровый гигант — совершенно разные вещи.
Спутники «Вояджер» передают данные в 8-гигагерцевом диапазоне, на этой частоте мало помех. Антенна на Земле задействует мощный усилитель и получает сигнал. После этого отправляет сообщение обратно на зонд с помощью мощнейшего передатчика, чтобы «Вояджер» наверняка получил сообщение.
На передовой
«Вояджер-1» передает данные на Землю с 1977 года. Но члены команды, контролирующей миссию в Лаборатории реактивного движения NASA, не так давно обрадовали нас интересной новостью. 12 сентября 2013 года NASA подтвердило, что зонд вступил в область гелиопаузы, где солнечный ветер нашего Солнца уже не так силен, чтобы сталкиваться с солнечными ветрами соседних звезд. В этот момент «трехосный магнитометр» зафиксировал изменение магнитного поля, перпендикулярного направлению движения зонда. «Вояджер-1» стал первым объектом техногенного происхождения, покинувшим Солнечную систему.
Золотая Запись на борту «Вояджера»: 117 изображений Земли, приветствие на 54 языках, земные звуки
Циники — как и большинство астрономов, космологов и само NASA — говорят, что граница Солнечной системы определяется как точка, где объект перестает подвергаться воздействию солнечной гравитации. Но гравитация, как вы знаете, определяет Вселенную в огромных масштабах. И эта точка располагается на дистанции в 50 000 раз большей, чем расстояние от Солнца до Земли. «Вояджер-1» проехал 123 расстояния от Земли до Солнца (примерно 18 миллиардов километров). И ему понадобится еще 14 000 лет, чтобы при нынешней его скорости покинуть гравитационный захват Солнца.
Ничто не мешает программе «Вояджер» делать отличные наблюдения. «Вояджер-1» и его двойник, «Вояджер-2», вылетевший на 15 дней раньше, но опоздавший из-за экскурсии к Урану и Нептуну, обнаружили следы четырех газовых гигантов и множество странных астрономических явлений. И хотя «Вояджер-1» некоторое время оставался в пределах Солнечной системы, он вошел в зону, где заряженные частицы солнечного ветра сменятся пылью и другими материалами, заполняющими пространство между звездами.
За годы «Вояджеры» обнаружили ряд астрономических сюрпризов. Один из последних появился летом 2012 года, когда «Вояджер-1» обнаружил ранее неизвестное явление под названием «магнитное шоссе». В этом регионе, как показали инструменты на борту зонда, сталкиваются солнечное и межзвездное магнитные поля. Эдвард Стоун, главный по программе «Вояджера» с 1972 года, объяснил, что это происходит, когда частицы с низкой энергией внутри «гелиосферы» подменяются более высокоэнергетичными частицами из космоса.
Изображение Юпитера, сделанное «Вояджером-1» в апреле 1979 года
Создатели зондов рассчитывали, что те будут достаточно крепкими и прочными, чтобы выдержать все капризы космоса. Особенно во время близкого подлета к Юпитеру и Сатурну, а также экскурсиям к Урану и Нептуну в исполнении «Вояджера-2». Поэтому когда в 1973 году «Пионер-10» измерил радиацию вокруг Урана и Нептуна и обнаружил, что она выше, чем ожидалось, команда Стоуна потратила 9 месяцев на замену и реконструкцию каждого элемента зонда, который может пострадать. Конечно, зонды были спроектированы с избыточным запасом прочности. Например, каждый из зондов несет по две копии трех отдельных компьютерных систем. Но пока что мало какие бортовые системы нуждаются в перезагрузке. Можно с уверенностью сказать, что Стоун по-отцовски гордится своим творением и его подвигами.
Забота, с которой зонды делали здесь, на Земле, тоже сыграла свою роль в успехе миссии. Когда основной и дополнительный приемники на «Вояджере-2» отказали спустя год от начала миссии, земная команда активировала резервную систему, которая работает и по сей день. В 2010 году, получив искаженное сообщение от зонда, команда провела тщательный дамп памяти, используя один из резервных компьютеров, и выяснила, что один бит в программе изменился с 0 на 1. Перезагрузка программы все исправила.
Изображения Урана: «Вояджер-2», июнь 1986 года, и одно из последних
Команда ученых регулярно обновляет систему управления для обеспечения оптимального использования ресурсов зондов во время их активной работы. Только за юпитерианскую фазу «Вояджера-1» это сделали 18 раз. Возьмем, к примеру, передачу данных. Когда «Вояджеры» облетали Юпитер и Сатурн, зонды были достаточно близки к Земле, чтобы послать несжатое изображение и другие данные на относительно высокой скорости передачи: 115 000 и 45 000 бит в секунду соответственно. Но поскольку сила сигнала изменяется обратно пропорционально квадрату расстояния между передатчиками, во время исследования Урана «Вояджер-2» передавал данные со скоростью 9000 бит/сек. У Нептуна число упало до 3000, тем самым уменьшив количество фотографий и данных, которые можно отправить домой.
Большинство резервных компьютеров включаются в работу, когда основная терпит крушение. Однако одна из вспомогательных систем зондов была активирована и работала совместно с основной. Это позволило отправлять 640-килобайтные изображения Урана с потерей качества после сжатия всего до 256 килобайт.
Как говорится, все гениальное — просто. Команда Стоуна экипировала зонды передовым аппаратным обеспечением под названием дешифратор Рида — Соломона. Устройство значительно снижает уровень погрешности, мешающий корректному прочтению сообщений в случае потерь отдельных битов. Первоначально «Вояджер» использовал старую и хорошо проверенную систему, которая отсылала один бит, «корректирующий ошибки», на каждый бит в сообщении. Дешифратор Рида — Соломона правил одним битом пять других. Забавно то, что в 1977 году способ дешифрации скорректированных данных по методу Рида — Соломона еще не существовал. К счастью, к тому времени, когда «Вояджер-2» достиг Урана в 1986 году, все было готово.
Знаменитый снимок Земли «Pale Blue Dot» 1990 года: последняя миссия «Вояджера-1». 6 миллиардов километров
В настоящее время данные, которые приходят от «Вояджеров» на радиотелескопы по всему земному шару, идут со скоростью всего 160 бит в секунду. Это решение было принято сознательно, чтобы поддерживать постоянную скорость на протяжении всей миссии. Основные камеры были отключены после пролета последней планеты Солнечной системы, активными остались только несколько инструментов. Каждые шесть месяцев на протяжении 30 минут данные с 8-контактной цифровой ленты переносятся в сжатый архив на скорости 1400 бит в секунду.
Радиоизотопные термоэлектрические генераторы на основе плутония-238 будут поддерживать работу инструментов минимум до 2021 года. А к 2025 году после почти полувекового путешествия туда, где нет ничего человеческого, команда отключит зонды и будет сообщаться с ними в немного сентиментальной односторонней манере, чтобы «Вояджеры» верно шли своим курсом. И они будут лететь все дальше и дальше во тьму.
«Вояджер-1» несет достаточно ядерного топлива, чтобы продолжать служить во благо науки до 2025 года, а после смерти плыть по течению. По своей нынешней траектории зонд в конце концов должен оказаться в 1,5 световых годах от нас у звезды Camelopardalis в северном созвездии, которое выглядит чем-то средним между жирафом и верблюдом. Никто не знает, есть ли планеты возле этой звезды и обоснуют ли инопланетяне там резиденцию к моменту прибытия зонда.
Источник
Связь в космосе: как это работает
Кадр из фильма “Космическая одиссея 2001 года” (1968)
Представьте, что вам нужно пробросить песчинку через ушко иглы с расстояния 16 000 километров. Примерно тем же самым занимались ученые, отправив в 2004 году к комете Чурюмова-Герасименко межпланетную станцию «Розетта». В 2015 году станция и комета находились на расстоянии около 265,1 млн км от Земли. Однако надёжная связь позволила «Розетте» не только сесть на комету, но и получить ценнейшие научные данные.
Сегодня космическая связь — одно из самых сложных и перспективных направлений развития коммуникационных технологий. Орбитальные спутники уже дали нам GPS, ГЛОНАСС, глобальные точнейшие цифровые карты, интернет и голосовую связь в самых отдаленных районах Земли, но мы смотрим дальше. Как космическая связь работает сейчас и что нас ожидает в будущем?
Путь «Розетты»
Основой инфраструктуры наземных станций, используемых во время миссии «Розетты», стала компьютерная система Intermediate Frequency Modem System (IFMS), разработанная BAE Systems. Помимо расшифровывания 350 гигабайт данных, переданных станцией, система позволила точно рассчитать положение космического корабля, действуя как GPS для Солнечной системы.
Система IFMS принимала и передавала сигналы в течение всей 10-летней миссии и сопровождала станцию около 800 миллионов километров. IFMS позволяет измерять скорость с точностью до долей миллиметра в секунду, а положение космического аппарата с точностью в пределах метра в любой точке Солнечной системы.
Модули IFMS размещаются на наземных станциях Европейского космического агентства (ЕКА), модернизированных более 20 лет назад для более совершенного получения радиосигналов с космических аппаратов. Вместо аналоговой обработки — настройки на сигнал, фильтрации и демодуляции — новая (на тот момент) технология позволила преобразовывать необработанный сигнал в цифровую форму, из которой программное обеспечение извлекало необходимую информацию.
После преобразования большая часть последующей обработки сигнала выполняется с помощью ППВМ-микрочипов (программируемая пользователем вентильная матрица, field-programmable gate array, FPGA). Они состоят из логических блоков, которые могут быть подключены параллельно для выполнения вычислений. Это позволило разработать сложные алгоритмы для поддержания высокого уровня шумоподавления и стабильности сигналов из космоса.
На Марс и обратно
Наземная сеть антенн Deep Space Network (DSN)
В основном спутники обеспечивают радиосвязь как ретрансляторы, однако для связи с межпланетными космическими аппаратами требуется более продвинутая система, состоящая из больших антенн, сверхмощных передатчиков и сверхчувствительных приемников.
Канал передачи данных на Землю очень узкий — например, параболическая антенна DSS (Deep Space Stations) недалеко от Мадрида принимает данные на скорости 720 Кб/сек. Конечно, марсоход передает всего 500-3200 бит в секунду по прямому каналу, однако основной канал проходит через орбитальный спутник Марса — получается около 31 Мб данных в сутки от марсохода, плюс еще данные, полученные от измерительных датчиков самого спутника.
Связь на расстоянии 55 миллионов километров поддерживает международная сеть радиотелескопов и средств связи Deep Space Network. DSN является частью NASA. В России же для связи с далекими космическими аппаратами используют знаменитый Восточный центр дальней космической связи, расположенный неподалеку от Уссурийска.
На сегодняшний день DSN объединяет три наземные базы, расположенные на трех континентах — в США, Испании и Австралии. Станции удалены друг от друга примерно на 120 градусов долготы, что позволяет им частично перекрывать зоны действия друг друга.
Спутник Mars Odyssey — самый долго действующий космический аппарат из всех, когда-либо отправленных на Марс — обменивается данными с DSN с помощью антенны с высоким коэффициентом усиления на частоте 8406 МГц. Прием данных от марсоходов ведется на УВЧ-антенну.
«Роуминг» по Солнечной системе
DSS-63
Марс — далеко не единственное место во Вселенной, с которым нам нужно поддерживать связь. Например, межпланетные зонды отправлялись к Сатурну и Титану, а Вояджер-1 вообще улетел на 20 миллиардов километров от Земли.
Чем дальше от нас улетают межпланетные станции, тем сложнее уловить их радиосигналы. Мы пока не можем по всей Солнечной системе расставить орбитальные спутники, поэтому вынуждены строить огромные параболические антенны.
Возьмём, к примеру, Мадридский комплекс дальней космической связи. Главная параболическая антенна комплекса DSS-63 имеет зеркало диаметром более 70 метров и весом 3,5 тысячи тонн. Для отслеживания зондов антенна вращается на четырех шариковых подшипниках весом в одну тонну каждый.
Антенна не только принимает сигнал, но и передает. И хотя траектория движения и вращения Земли давно посчитана и пересчитана, найти маленький объект в космосе, чтобы точно направить на него огромную антенну, — задача очень сложная.
Для поиска отдаленных объектов используется радиотриангуляция. Две наземные станции сравнивают точный угол, под которым сигнал попадает на зеркало антенны в разные промежутки времени, и таким образом вычисляется расстояние до объекта и его местоположение.
Центры дальней космической связи
Разработка в 50-х гг. первой советской межконтинентальной баллистической ракеты (МБР) Р-7, оснащенной радиоуправлением, поставила перед ее создателями сложную задачу – необходимо было построить большую сеть измерительных станций, которые могли бы определять скорость и корректировать полет ракеты.
Для поддержки запусков первых спутников оборудование, первоначально созданное для испытаний баллистической ракеты, было модернизировано и размещено в научно-измерительных пунктах (НИП). С них осуществлялась передача команд на космические аппараты.
В стране построили десятки НИП. Часть измерительного оборудования разместили на специальных кораблях Военно-морского флота. Корабли участвовали в испытаниях всех типов советских МБР, искусственных спутников и автоматических межпланетных станций, обеспечивали все отработочные и штатные околоземные и лунные полёты советских космических кораблей.
После развала СССР корабли измерительного комплекса за редким исключением были уничтожены. Однако сохранились другие важные для космической связи объекты. По географическим причинам наиболее важные командно-измерительные пункты создали в Крыму (16-й НИП – Западный Центр дальней космической связи) и в Приморском крае (15-й НИП – Восточный Центр дальней космической связи известный как объект «Уссурийск»).
Западный Центр в Евпатории принимал и обрабатывал информацию с первой автоматической станции «Луна», поддерживал связь с межпланетными станциями серий «Венера», «Марс», «Эхо», управлял аппаратами во множестве других проектах.
Главный объект Центра – антенна АДУ-1000 с 8 параболическими зеркалами диаметром 16 метров.
Объект «Уссурийск» был создан в 1965 году в результате перевода Радиоэлектронной части военно-космических сил в районе села Галёнки, в 30 км к северо-западу от Уссурийска. В 1985 году здесь был построена одна из крупнейших в мире антенн – РТ-70 с диаметром зеркала 70 м (такая же антенна находится и в Крыму).
РТ-70 продолжает действовать и будет использоваться в самых перспективных разработках страны – в новой российской лунной программе, стартующей в 2019 году (проект «Луна-25»), и для единственного в мире проекта орбитальной рентгеновской астрономии на ближайшие 15 лет «Спектр-Рентген-Гамма».
Работа устройства Deep Space Optical Communication.
Сейчас на земной орбите находится около 400 коммерческих спутников связи, но в ближайшем будущем их станет гораздо больше. Компания ViaSat объявила о совместном проекте с Boeing по запуску трех спутников нового поколения, пропускная способность которых будет более 1 Тбит/сек — это больше пропускной способности всех вместе взятых работающих спутников на 2017 год.
ViaSat планирует предоставлять доступ в интернет на скорости 100 Мбит/сек по всему миру на частоте 20 ГГц, используя фазированные антенные решетки, а также многопозиционные системы передачи данных.
Компания SpaceX планирует уже в 2019 году начать запускать на орбиту более 12 000 спутников связи (в 30 раз больше всех сегодня летающих!), которые будут работать на частотах 10,7-18 ГГц и 26,5-40 ГГц.
Как вы можете себе представить, нужно обеспечить управление всей орбитальной группировкой спутников таким образом, чтобы не допустить столкновений аппаратов. Кроме того, рассматриваются проекты создания каналов связи со всеми искусственными объектами Солнечной системы. Все эти требования вынуждают инженеров ускорить развертывание новых каналов.
Межпланетные телекоммуникации в радиочастотном спектре с 1960 года увеличились на восемь порядков в пропускной способности, однако нам по-прежнему не хватает скорости для передачи изображений и видео высокой четкости, не говоря уже о коммуникации с тысячами объектов одновременно. Один из перспективных способов решения проблемы — лазерная связь.
Впервые космическая лазерная связь была испытана российскими учеными на МКС 25 января 2013 г. В том же году на аппарате Lunar Atmosphere and Dust Environment Explorer испытывалась система двусторонней лазерной связи между Луной и Землей. Удалось достичь скорости передачи данных 622 Мбит/сек с аппарата на наземную станцию, и 20 Мбит/сек с наземной станции на аппарат, находившийся на расстоянии 385 000 км от Земли.
Проект Laser Communications (LASERCOM) в будущем сможет решить вопрос связи в околоземном пространстве, Солнечной системе и, возможно, в межзвездных миссиях.
Лазерная связь в глубоком космосе будет проверена в ходе миссии «Психея». Зонд стартует в 2022 году, а в 2026 году достигнет металлического астероида 16 Psyche. На борту зонда будет установлено специальное оборудование Deep Space Optical Communications (DSOC) для передачи большего количества данных. DSOC должно повысить производительность и эффективность связи космических аппаратов в 10-100 раз по сравнению с обычными средствами, без увеличения массы, объема, мощности и спектра.
Ожидается, что использование лазерной связи приведет к революционным изменениям в будущих космических миссиях.
Источник