5 причин, почему космический лифт между Землёй и её орбитой никогда не будет построен
Поскольку человечество хоть и медленно, но всё же осваивается в космосе, возник вопрос о доставке на орбиту необходимых вещей. Ракеты не подходят — они слишком дороги при эксплуатации и вредят экологии. Ещё одна возможность — построить космический лифт, который будет связывать космос с Землёй.
Высота такой конструкции составит 35 400 км. Предполагается, что это будет сверхпрочный трос, одним концом закреплённый на поверхности планеты, а другим — в неподвижной точке выше геостационарной орбиты. По тросу поднимается подъёмник, несущий полезный груз. При подъёме груз будет ускоряться за счёт вращения планеты, что позволит на достаточно большой высоте отправлять его за пределы тяготения Земли.
Звучит вроде бы логично. Правда, здесь есть несколько сложностей, делающих и этот способ крайней непрактичным:
1. Нет достаточно прочного материала для троса
Нагрузка на трос может превышать 100 000 кг/м., так что материал для его изготовления должен обладать чрезвычайно высокой прочностью для устойчивости к растяжениям, и при этом очень низкой плотностью. Пока такого материала нет — не подходят даже углеродные нанотрубки, считающиеся сейчас самыми прочными и упругими материалами на планете.
К сожалению, технология их получения только начинает разрабатываться. Пока что удаётся получить крошечные кусочки материала: самая длинная нанотрубка, которую удалось создать — пара сантиметров в длину и несколько нанометров в ширину. Удастся ли когда-нибудь сделать из этого достаточно длинный трос, пока неизвестно.
2. Восприимчивость к опасным вибрациям
Трос будет восприимчив к непредсказуемым порывам солнечного ветра — под его воздействием он будет изгибаться, и это отрицательно скажется на стабильности лифта. В качестве стабилизаторов к тросу можно прикрепить микродвигатели, но эта мера создаст дополнительные трудности в плане технического обслуживания сооружения. Кроме того, это затруднит продвижение по тросу специальных кабинок, так называемых «альпинистов». Трос, скорее всего, вступит с ними в резонанс.
3. Сила Кориолиса
Трос и «альпинисты» неподвижны относительно поверхности Земли. А вот по отношению к центру Земли объект будет двигаться со скоростью 1 700 км/ч на поверхности и 10 000 км/ч на орбите. Соответственно, «альпинистам» при запуске надо придать эту скорость. «Альпинист» разгоняется в перпендикулярном тросу направлении, и из-за этого трос будет раскачиваться подобно маятнику. Одновременно с этим возникает сила, пытающаяся оторвать наш трос от Земли. Сила обратно пропорциональна величине прогиба троса и прямо пропорциональна скорости подъема груза и его массе. Таким образом, сила Кориолиса мешает быстро поднимать грузы на геостационарную орбиту.
С силой Кориолиса можно бороться, просто запуская одновременно двух «альпинистов» — с Земли и с орбиты, но тогда сила между двумя грузами будет растягивать трос ещё сильнее. Как вариант — мучительно медленный подъём на гусеничном ходу.
4. Спутники и космический мусор
За последние 50 лет человечество запустило в космос множество объектов — полезных и не очень. Или строителям лифта придётся всё это найти и убрать (что невозможно, учитывая количество полезных спутников или орбитальные телескопы), или предусмотреть систему, защищающую объект от столкновений. Трос — теоретически неподвижен, поэтому любое вращающееся вокруг Земли тело рано или поздно с ним столкнётся. Кроме того, скорость при столкновении будет практически равна скорости вращения этого тела, так что тросу будет причинён большой ущерб. Маневрировать трос не может, а протяжённостью обладает большой, поэтому столкновения будут частыми.
Как с этим бороться, пока не ясно. Учёные говорят о постройке орбитального космического лазера для сжигания мусора, но это уж совсем из области научной фантастики.
5. Социальные и экологические риски
Космический лифт вполне может стать объектом террористической атаки. Успешная подрывная операция нанесёт огромный ущерб и может вообще похоронить весь проект, так что одновременно с лифтом придётся выстраивать вокруг него и круглосуточную оборону.
Экологи же считают, что кабель, как ни парадоксально, может сместить земную ось. Трос будет жёстко закреплён на орбите, и любое его смещение наверху отразится на Земле. Кстати, представляете, что случится, если он вдруг оборвётся?
Таким образом, реализовать такой проект на Земле очень сложно. А теперь хорошая новость: это будет работать на Луне. Сила притяжения на спутнике куда меньше, а атмосфера фактически отсутствует. Якорь можно создать в поле силы тяжести Земли, и трос с Луны будет проходить через точку Лагранжа — таким образом, мы получаем канал связь между планетой и её естественным спутником. Такой трос при благоприятных условиях сможет переправлять на орбиту земли около 1000 тонн груза в сутки. Материал, конечно, потребуется сверхпрочный, но ничего принципиально нового изобретать не придётся. Правда, длина «лунного» лифта должна будет составить около 190 000 км из-за эффекта, названного Гомановской траекторией.
Источник
Возможен ли космический лифт в реальности: что говорит наука
В Интернете появилось видео, где объяснили, возможен ли лифт в космос
Орбитальный, или космический лифт — это такая гипотетически существующая в умах фантастов конструкция, орбита которой простирается высоко над поверхностью Земли. Считается, что если подобный лифт будет реализован, по нему можно будет отправлять в космос грузы с гораздо меньшими затратами, чем это делают сейчас на ракетах.
Но такая ли это фантастическая идея? Ведь впервые в 1895 году ее высказал отец теоретической космонавтики Константин Циолковский , а детали подобной конструкции прорабатывал и примерял на реальность советский инженер, теоретик идеи космического лифта Юрий Арцутанов .
Вряд ли ученый, сумевший прозорливым своим умом задолго до космической эры проникнуть в суть космонавтики и предсказавший теорию космических полетов, разложив их по формулам, мог ошибаться. Значит, это было возможно? А что на этот счет говорит современная наука, пускай и любительская ее часть?
Научный YouTube-канал «Real Engineering» использовал математические формулы, чтобы ответить на вопрос «Реально ли реализован такой орбитальный лифт?»
Возможно ли строительство космического лифта? Ответ — в видео:
Видео взято с YouTube-канала «Real Engineering»
Итак, орбитальный лифт — это огромная, очень длинная лифтовая шахта (или в изначальной концепции — трос), соединяющая поверхность Земли и космическое пространство. Трос удерживается одним концом на поверхности планеты (Земли), а другим — в неподвижной относительно планеты точке выше геостационарной орбиты (ГСО) за счет центробежной силы.
По тросу или шахте будет подниматься подъемник, несущий полезный груз. При подъеме груз будет ускоряться за счет вращения Земли, что позволит на достаточно большой высоте отправлять его за пределы тяготения Земли.
Что потребуется для создания такого лифта?
В первую очередь, чтобы построить подобный космический лифт, вам понадобится совершенно иной материал, с другими физическими характеристиками, нежели любая из существующих марок стали. Он должен будет обладать большей прочностью на разрыв в сочетании с низкой плотностью (то есть должен быть действительно очень легким).
Если в обычных зданиях проблема веса решается за счет увеличения площади фундамента и утонения диаметра здания с ростом высоты, наиболее хрестоматийный пример — пирамида, а более современный — небоскреб Бурдж-Халифа — самое высокое здание в мире, высотой 828 метра.
Но даже 1 километр — это капля в море для орбитального лифта, да и по классической схеме подобный подъемник построен быть не может. Да и не нужно ему это, ведь на конце троса или шахты, рельс (называйте это сооружение как угодно) будет находиться непосредственно космическая станция, получившая название «противовес».
«Противовес может быть создан двумя способами — путем привязки тяжелого объекта (например, астероида, космического поселения или космического дока) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту», Википедия .
Противовес подвергается центробежной силе, тянущей его наружу, в открытое космическое пространство, что обусловлено вращением Земли. Поэтому постоянно конструкция будет переживать огромнейшие нагрузки, причем, как считают ученые, нагрузки будут неравномерны, что приведет к необходимости применения конструкции разной толщины.
Вот как это может выглядеть на примере троса:
«Космический лифт должен выдерживать по крайней мере свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой — прибавляет его вес, а следовательно и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других — выдерживать центробежную силу, удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке толщина его будет непостоянной», Википедия.
При этом спецы с YouTube-канала «Real Engineering» отмечают, что для того чтобы орбитальный лифт оставался на устойчивой круговой орбите, будет необходимо найти точку, в которой центробежная сила и сила тяжести были бы уравновешены, а для этого потребуется рассчитать точно заданную высоту.
Какой длины должен быть трос космического лифта?
Ниже представлена диаграмма для расчета центробежной силы и силы тяжести, где «Ms» — это масса спутника, «ω (омега)» — угловая скорость, «r» — расстояние до центра Земли, «G» — гравитационная постоянная, «mp» — масса Земли.
Путем вычислений получаем ответ на вопрос о точно заданной высоте — она равняется 36 000 км над поверхностью Земли в районе экватора или 42 168 километров от центра Земли, говорится в видео.
Поскольку построить конструкцию высотой около 36 000 км от Земли невозможно, для строительства орбитального лифта был разработан способ протягивания троса от огромного искусственного спутника до поверхности Земли.
Однако если вы протянете трос по направлению к поверхности Земли, центр тяжести сместится и спутник упадет. Следовательно, необходимо удлинить привязь, сохраняя положение центра тяжести, установив противовес на противоположной стороне троса.
По мере того как вы приближаетесь к Земле, гравитация становится сильнее, а центробежная сила ослабевает, поэтому трос, натянутый на поверхность Земли, оказывает сильное воздействие на точку опоры на Земле.
Существуют ли материалы, из которых можно построить сооружение такой высоты?
С другой стороны, по мере того как вы будете приближаться к космическому пространству, гравитация станет ослабевать, а центробежная сила — увеличиваться, поэтому трос, натянутый в невесомости, будет испытывать более высокие нагрузки. В результате этого центральная точка конструкции будет испытывать наибольшие, колоссальные нагрузки на растяжение.
Усилие, воспринимаемое тросом, можно рассчитать по следующей формуле, приведенной в видео, где «G» — гравитационная постоянная, «M» — масса Земли, «ρ (low)» — плотность материала троса, «R» — радиус Земли, «Rg» — радиус стационарной орбиты.
В видео подсчитано, какой из доступных материалов мог бы выдержать эту силу. В качестве примера предлагается стальной трос с плотностью порядка 7900 килограммов на кубический метр, подставляется в значение «ρ», …
Итого после вычислений получается, что максимальное напряжение при натяжении составляет 382 Гига Паскаль. Это в 240 раз выше прочности стали.
Однако материалу с меньшей плотностью, чем у стали, требуется меньшее растягивающее напряжение. Кроме того, трос можно сделать тоньше, поскольку он будет испытывать минимальные силы вблизи поверхности Земли или у противовесов.
Предположим, что самая тонкая часть троса составляет 5 мм.
Далее рассчитаем диаметр самой толстой части. Если используется сталь, диаметр самой толстой части составит 1,76×1054 метра. Поскольку известный размер наблюдаемой Вселенной составляет 8,8×1026 метров, теоретически требуется стальной трос диаметром большей толщины, чем Вселенная. Это означает, что построить лифт с применением стали точно невозможно. Тем не менее даже сегодня существуют другие материалы, гораздо более прочные, но при этом обладающие низкой плотностью.
Итого на сегодняшний момент подсчитано, что толщина троса из композитного материала, например из углеродного волокна, составит 170 метров, а из кевларового волокна — 80 метров, но сделать кевларовое волокно толщиной 80 метров технологически невозможно как с технической, так и с экономической точки зрения.
Таким образом, ответ на вопрос «Существуют ли материалы для создания космического лифта?» однозначный — НЕТ, НЕ СУЩЕСТВУЮТ!
Но это не может быть невозможно в будущем. Уже сегодня есть перспективные наработки, например, одним из таких материалов будущего, которые могли бы вынести на своих плечах столь титанический проект, являются углеродные нанотрубки (УНТ).
Прочность углеродных нанотрубок поразительна: одно из исследований показало, что максимальное растягивающее напряжение достигает 130 гигапаскалей, а плотность составляет всего 1300 килограммов на кубический метр. И, вроде как, японцы на данный момент являются пионерами в проведении разработок в этом направлении. Однако пока остается много инженерных проблем для практического применения углеродных нанотрубок. И об их практическом применении можно будет говорить лишь после очень долгих тестов и доработок.
Источник