Луна – естественный спутник Земли
Луна — единственный естественный спутник планеты Земля. Это второй самый яркий объект в небосводе после Солнца. Так как Луна вращается по орбите кругом Земли с временем в один месяц, угол меж Землей, Луной и Солнцем меняется; мы видим этот эффект как цикл лунных фаз.
Хотя Луна и вертится вокруг собственной оси, она всегда обращена к Земле одной и той же стороной. Дело в том, что она производит один кругооборот вокруг собственной оси за то же время (27,3 дней), что и один оборот вокруг Земли. А так как направленность обоих вращений совпадает, его противоположную сторону с Земли узреть нереально.
При этом вращение Луны вокруг Земли по эллиптической орбите проистекает неравномерно, с Земли имеется возможность видеть 59% лунной поверхности.
- Первым космическим аппаратом, достигшим поверхности Луны, является «Луна-2». Он был запущен в СССР 12 сентября 1959 года.
- Впервые нога человека ступила на Луну 20 июля 1969 года. Это были американские астронавты «Аполлона-11».
Еще до того, как стали проводиться космические исследования, астрономы уже заявляли о необычности Луны.
Ее плотность меньше плотности любой планеты земной группы (Земли, Марса, Венеры, Меркурия) — всего лишь в 3,3 раза больше плотности воды. Даже этот факт является свидетельством необычных условий образования спутника.
По пробам грунта с ее поверхности был установлен химический состав, а также возраст Луны (самые старые образцы – 4,1 млрд. лет), и это обстоятельство еще больше запутало представление землян о происхождении данного небесного тела.
В настоящее время большинство ученых считают, что Луна сформировалась в результате столкновения крупного небесного тела с Землей.
Луна по сравнению со спутниками других планет
Несмотря на не столь выдающиеся в сравнении с другими спутниками Солнечной системы размеры, Луна является самым крупным по отношению к своей планете – Земле – спутником.
Луна является достаточно большим спутником. По размерам ее превосходят лишь такие спутники других планет, как Ио, Каллисто, Ганимед, Титан. Таким образом, размер Луны позволяет занимать этому небесному телу среди 91 спутника всей Солнечной системы пятое место.
Орбита Луны
- Перигей (ближайшая к Земле точка орбиты): 363 104 километра (изменяется в пределах 356 400 – 370 400 километров).
- Апогей (самая далекая от Земли точка орбиты): 405 696 километров (изменяется в пределах 404 000 – 406 700 километров).
- Средняя скорость движения Луны по орбите составляет около 1,023 километра в секунду.
- Лунавращается вокруг Земли по эллиптической орбите с периодом 27,3 суток, постепенно удаляясь от нее вследствие приливного ускорения на 38 миллиметров в год, то есть ее орбита представляет собой медленно раскручивающуюся спираль.
Физические характеристики Луны
- Температура поверхности Луны колеблется от −173 °C ночью до +127 °C в подсолнечной точке. Температура пород на глубине 1 метр постоянна и равна −35 °C.
- Средний радиус Луны составляет 1737,1 километра, то есть примерно 0,273 радиуса Земли.
- Площадь поверхности Луны составляет 3,793 х 107 квадратных километров.
- Средняя плотность Луны составляет 3,3464 грамм на кубический сантиметр.
- Ускорение свободного падения на Луне равно 1,62 метра на секунду в квадрате (0,165 g).
- Масса Луны равна 7,3477 х 1022 килограмм.
Система Земля – Луна
Разумеется, не совсем верно говорить о движении Луны вокруг Земли. Точнее, оба эти тела обращаются вокруг их общего центра массы, лежащего ниже поверхности Земли. Анализ колебаний Земли показал, что масса Луны в 81 раз меньше массы Земли.
Гравитационное притяжение Луны вызывает приливы и отливы на Земле.
Приливные движения в результате трения замедляют вращение Земли, увеличивая продолжительность земных суток на 0,001 с за столетие.
Поскольку момент импульса системы Земля – Луна сохраняется, замедление вращения Земли приводит к медленному удалению Луны от Земли. Однако в нынешнюю эпоху расстояние между Землей и Луной уменьшается на 2,5 см в год из-за сложного взаимодействия Солнца и планет с Землей.
Луна всегда обращена к Земле одной стороной.
Детальный анализ ее гравитационного поля показал, что Луна деформирована в направлении Земли, но искажение ее формы слишком велико для современного приливного эффекта. Это искажение считают «замороженным приливом», оставшимся с тех пор, когда Луна была ближе к Земле и испытывала с ее стороны более сильное приливное влияние, чем сейчас. Но эта выпуклость может представлять собой и неоднородность внутреннего строения Луны.
Лунная иллюзия
Рядом с горизонтом Луна по размерам кажется гораздо больше, нежели высоко на небосводе. Это оптический обман.
Согласно психологическим опытам, в подсознании наблюдателя формируется собственное представление о размерах объекта под воздействием восприятия величины соседствующих объектов. Чем выше в небе, тем Луна воспринимается меньше, поскольку находится в большом пустом пространстве. Но ближе к горизонту ее размеры легко сравнимы с расстоянием от Луны до горизонта, ввиду чего неосознанно усиливается впечатление о лунном размере.
Изменения видимой формы Луны
Поскольку Луна — сферическое тело, при её освещении сбоку возникает «серп». Освещённая сторона луны всегда указывает в сторону Солнца, даже если оно скрыто за горизонтом.
Продолжительность полной смены фаз Луны (так называемый синодический месяц) непостоянна из-за эллиптичности лунной орбиты. Средний синодический месяц составляет 29 суток 12 часов 44 минуты 2,82 секунды.
В фазах Луны, близких к новолунию (в начале первой четверти и в конце последней четверти), при очень узком серпе, неосвещённая часть образует т. н. пепельный свет Луны — видимое свечение неосвещённой прямым солнечным светом поверхности характерного пепельного цвета.
Луна проходит следующие фазы освещения:
- новолуние — состояние, когда Луна не видна.
- молодая луна — первое появление Луны на небе после новолуния в виде узкого серпа.
- первая четверть — состояние, когда освещена половина Луны.
- прибывающая луна
- полнолуние — состояние, когда освещена вся Луна целиком.
- убывающая луна
- последняя четверть — состояние, когда снова освещена половина Луны.
- старая луна
Обычно на каждый календарный месяц выпадает по одному полнолунию, но так как фазы Луны сменяются немного быстрее, чем 12 раз в году, иногда случаются и вторые полнолуния за месяц, называемые голубой луной.
Мнемоническое правило определения фаз Луны
Чтобы отличить первую четверть от последней, наблюдатель, находящийся в северном полушарии, может использовать следующие мнемонические правила. Если лунный серп в небе похож на букву «С», то это — луна «Стареющая» или «Сходящая», то есть это последняя четверть. Если же он повёрнут в обратную сторону, то, мысленно приставив к нему палочку, можно получить букву «Р» — луна «Растущая», то есть это первая четверть.
Растущий месяц обычно наблюдается вечером, а стареющий — утром.
Следует заметить, что вблизи экватора месяц всегда виден «лёжа на боку», и данный способ не подходит для определения фазы.
В южном полушарии ориентация серпа в соответствующих фазах противоположная: растущий месяц (от новолуния до полнолуния) похож на букву «С», а убывающий (от полнолуния до новолуния) похож на букву «D» без палочки.
Если по направлению движения луны передний край освещённый — луна растущая, затенённый — убывающая.
Разница между Луной и Землей
Хотя между Землей и Луной около 400 тысяч километров, они тесно связаны и способны влиять друг на друга. Луна взаимодействует со всей земной природой, активизируя, к примеру, морские приливы и отливы. Тем не менее, у двух этих небесных тел довольно много отличий друг от друга.
Сравнение
Земля в 81 раз больше Луны по массе. Радиус Луны примерно в три с половиной раза меньше радиуса Земли.
Сравнение размеров Луны, Земли и Марса
Землю окружает геосфера – газовая оболочка с различными примесями. На Луне атмосфера практически отсутствует, нет кислорода, нет ветра. Поэтому днем поверхность Луны от палящего Солнца нагревается до 120°C, а ночью может остыть до –160°C.
Днем на Земле светло, ночью – темно. На Луне даже днем небо всегда черное и безоблачное: при ярком Солнце небо усыпано звездами. С Земли небо кажется голубым: такой цвет ему придает воздух. Солнечные лучи рассеиваются, и звезды днем не видны.
Земля отражает солнечный свет примерно раз в 50 сильнее, чем Луна.
Большая часть Земли занята морями и океанами, меньшая – материками и островами. Поверхность Луны состоит из гористой местности и лунных морей (огромных кратеров с застывшей лавой).
Лунные горы, вероятнее всего, сформировались после столкновения с поверхностью огромных метеоритов, в то время как горы на Земле – результат тектонических процессов.
Луну покрывает смесь скалистых обломков и мелкой пыли, так называемый реголит, толщиной до нескольких десятков метров.
На Луне, в отличие от Земли, нет вулканической активности и практически нет воды (кроме небольших запасов льда). Земная поверхность постоянно подвергается воздействию воды и ветра, поверхность Луны не размывается и не выветривается.
Магнитное поле Луны очень слабое, а сила тяжести в шесть раз меньше в сравнении с Землей.
Химический состав и Земли, и Луны различен. К примеру, Земля содержит достаточно большое количество железа, в то время как на Луне его практически нет.
Выводы
- Земля в 81 раз тяжелее Луны.
- Радиус Луны в среднем в 3,5 раза меньше радиуса Земли.
- На Земле есть атмосфера, кислород, вода, а значит, и органическая жизнь. На Луне всего этого нет.
- Днем на Земле светло, можно видеть голубое небо, ночью же – темно. На Луне небо всегда черное, безоблачное.
- Земля отражает солнечный свет примерно раз в 50 сильнее, чем Луна.
- Поверхность Земли занята материками, океанами, морями и островами. На поверхности Луны сформированы горы и лунные моря (гигантские кратеры).
- На Луне сила тяжести в шесть раз меньше в сравнении с Землей.
- У Земли есть магнитное (геомагнитное) поле, в то время как у Луны оно почти отсутствует
- Химический состав двух астрономических объектов различен.
Видео
Источник
Реферат: Спутники планет
Название: Спутники планет Раздел: Рефераты по астрономии Тип: реферат Добавлен 23:41:04 05 марта 2007 Похожие работы Просмотров: 6871 Комментариев: 29 Оценило: 13 человек Средний балл: 3.7 Оценка: 4 Скачать | |||||||||||||||||||||
Спутник | Диаметр, км. | Масса (Луна=1) | Плотность, г./см 2 | Расстояние от планеты, 1000 км. | Период в сутках | Наклон к плоскости экватора планеты | Открытие |
Фобос | 23 | — | 9 | 0.319 | 1 0 | Холл, 1877 | |
Деймос | 16 | — | 23 | 1,262 | 2 0 | Холл, 1877 |
Система спутников Юпитера в настоящее время содержит 53 спутника (16 спутников, имеющих собственные имена, 12 спутников с временными обозначениями, открытых в 1999-2000 годах, 11 малых спутников, открытых в 2001 г. и один спутник S/2002 J1, открытый в 2002 г.)
До 1999 года были известны 16 спутников Юпитера , которые подразделяются на 4 группы. Это галилеевы спутники, названные по имени их первооткрывателя Галилео Галилея, — Ио, Европа, Ганимед и Каллисто. Названия для этих спутников предложены немецким астрономом Симоном Мариусом, который наблюдал эти спутники одновременно с Галилео Галилеем. Они отличаются большими размерами, Ио и Европа имеют размер Луны, Каллисто по размеру равна Меркурию, а Ганимед — крупнейший спутник солнечной системы, его диаметр равен 5262 км. По сравнению с другими спутниками галилеевские исследованы более детально. В очень хороших атмосферных условиях можно различить диски этих спутников и даже заметить некоторые детали на поверхности.
На основании результатов тщательных наблюдений за изменениями блеска и цвета галилеевских спутников установлено, что у всех у них осевое вращение синхронно с орбитальным, поэтому они всегда обращены к Юпитеру одной стороной. На снимках поверхности Ио, полученных с американских космических аппаратов «Вояджер», хорошо видны действующие вулканы. Над ними вздымаются светлые облака продуктов извержения, выброшенных на высоту многих десятков километров. На поверхности Ио – красноватые пятна. Полагают, что это выпарившиеся из недр соли. Необычной особенностью этого спутника является окружающее его протяженное облако газов. По данным космического аппарата «Пионер-10» были открыты разреженная атмосфера и ионосфера этого спутника. Среди галилеевских спутников выделяется Ганимед, который по размеру (свыше 5 тыс. км.) является, вероятно, самым большим из всех спутников планет Солнечной системы. С космического корабля «Пионер-10» было получено изображение поверхности Ганимеда. На снимке отчетливо видны яркая полярная шапка и пятна. На основании результатов наземных инфракрасных наблюдений считают, что поверхность Ганимеда, как и другого галилеевского спутника – Каллисто, покрыты водяным льдом или инеем. У Ганимеда обнаружены следы атмосферы. Эти четыре спутника являются объектами 5–6-й звездной величины, и их можно наблюдать в любой телескоп или бинокль. Остальные спутники гораздо слабее.
Из всех лун наиболее живописна Ио, которая вращается в наибольшей близости к Юпитеру. Цвет Ио совершенно необыкновенный — это смесь черного, красного и желтого. Такая удивительная окраска объясняется тем, что из недр Ио было извергнуто большое количество серы. Съемочные камеры «Вояджера» показали на Ио несколько действующих вулканов; они выбрасывают фонтаны серы на 200 км ввысь над поверхностью. Серная лава вылетает наружу со скоростью 1000 м в секунду. Некоторое количество этого лавового вещества вырывается из поля тяготения Ио и образует кольцо, опоясывающее Юпитер. Поверхность Ио молода. Мы можем судить об этом по тому, что на ней почти нет метеоритных кратеров. Орбита Ио проходит менее чем в 400 000 км от Юпитера. Поэтому Ио подвергается возмущающему действию огромных приливных сил. Постоянное чередование растягивающих и сжимающих приливов внутри Ио порождает интенсивное внутреннее трение. Благодаря этому внутренние области остаются горячими и расплавленными, несмотря на огромное удаление Ио от Солнца.
У Европы самая светлая поверхность. На одну пятую Европа состоит из воды, которая образует на ней ледяной панцирь толщиной в 100 км. Это ледяное покрытие так же сильно отражает свет, как облака Венеры.
Самая большая луна — Ганимед, ее диаметр равен 5262 км. Она покрыта толстой коркой льда, лежащей поверх каменистого ядра. Имеются многочисленные следы метеоритных бомбардировок, а также свидетельства столкновения с гигантским астероидом 4 миллиарда лет назад.
Каллисто по величине почти не уступает Ганимеду, и вся ее поверхность густо усеяна кратерами. Это самый темный по цвету из всех спутников Юпитера.
Кроме четырех галилеевых спутников существуют 3 группы малых спутников — 4 малых внутренних спутника находятся ближе к планете, чем Ио, 4 внешних спутника — на похожих орбитах с прямым движением на расстоянии около 11 млн км, и 4 обратных спутника — на расстояниях около 22 млн км.
Четыре малых внутренних спутника, находящихся ближе Ио, идентифицируются теперь как спутники кольца, образующие кольцевую систему Юпитера. Это — Метида, Адрастея и Теба, открытые Вояджером 1, и Амальтея — самый близкий к планете: он находится к ней на расстоянии в 2,6 радиуса планеты., открытый Барнардом в 1892 году.
Орбиты указанной группы из восьми спутников являются регулярными, т.е. спутники движутся в плоскости экватора Юпитера на почти круговых орбитах. Остальные восемь спутников являются нерегулярными спутниками, движущимися по эксцентричным и сильно наклоненным орбитам. Группа Гималии, в которую входят еще Лиситея, Леда и Элара, находится на расстоянии 11 миллионов километров. Радиусы этих спутников от 8 км у Леды до 90 км у Гималии. Вторая группа внешних спутников (Пасифе, Синопе, Ананке и Карме) включает в себя четыре спутника, движущихся в обратном направлении на расстоянии около 22 млн км. Размеры этих спутников от 30 до 70 км в диаметре.
В 1999 году открыт 17-й спутник Юпитера S/1999 J1, который также движется на расстоянии 22 млн км в сторону, обратную движению Юпитера, т.е. принадлежит группе Пасифе. В 2000 году открыт спутник S/2000 J1, отождествленный со спутником 1975 года S/1975 J1, а также еще 10 спутников, получивших обозначения S/2000 J2 — J11. Один из них имеет большую полуось, равную 11 млн. км, а остальные попадают во вторую группу внешних спутников с обратным движением и большой полуосью 20 — 23 млн.км.
В середине декабря 2001 г. группа астрономов, возглавляемая Шепардом и Джуиттом (Университет, Гавайи), а также Клейна (Кембридж, Англия) открыли еще 11 новых спутников Юпитера. В 2002 г. открыт спутник S/2002 J1. Общее количество спутников Юпитера теперь составляет 40, т.е. система спутников Юпитера является самой большой.
Все нерегулярные спутники можно разделить на определенные группы или классы. К спутникам с прямым движением относятся 5 внешних спутников. Это группа Гималии, включая Элару, Лиситею, Леду и S/2000 J11, находящихся на среднем расстоянии 11 млн.км на орбитах с наклонами 30-45 градусов. 32 спутника движутся в обратном направлении на расстоянии примерно 22 млн.км на орбитах с наклонами примерно 150 градусов. И только один спутник не входит ни в одну из указанных групп. Это S/2000 J1, движущийся на расстоянии 7.5 млн.км на орбите с наклоном 45 градусов.
Система Сатурна содержит 31 спутник (18 спутников имеют собственные названия и 12 спутников, открытых в 2000 году).
Первый спутник был открыт Гюйгенсом в 1655 году. Это самый большой спутник Сатурна Титан. Два спутника Мимас и Энцелад были открыты Гершелем, четыре спутника — Тефию, Диону, Рею и Япет открыл Кассини. В XIX веке были открыты наземными наблюдениями Гиперион и Феба. В течение 1979 -1981 г.г. открыто восемь новых спутников Сатурна — это Атлас, Прометей, Пандора, Елена и коорбитальные спутники Янус и Эпиметей. На орбите Тефии найдены еще два малых спутника — Калипсо и Телесто. Еще один спутник Пан был открыт в 1990 году. Ближайший из них к Сатурну – Янус движется на столько близко к планете, что обнаружить его удалось только при затмении колец Сатурна, создающего вместе с планетой яркий ореол в поле зрения телескопа. Самый большой спутник Сатурна – Титан – один из величайших спутников в Солнечной системе по размерам и по массе. Его диаметр приблизительно такой же, как диаметр Ганимеда. Титан окружен атмосферой. В ней движутся непрозрачные облака. Титан, по своей величине превосходит планету Меркурий. Астрономы считают, что эта луна состоит из равных количеств камня и водяного льда. Но самым замечательным представляется тот факт, что у Титана есть толстый слой атмосферы, состоящей главным образом из азота с некоторой примесью метана. Она Земле он встречается в виде природного газа. Никакая другая луна во всей Солнечной системе не имеет атмосферы. Атмосферное давление на Титане не намного больше, чем на Земле, зато температура — всего -180°С. При такой температуре метан существует как в виде газа, так и в виде жидкости, а также как твердое вещество — в зависимости от конкретных местных условий. Так что Титан в некотором смысле похож на Землю: там может быть дождь, и снег, и океаны, и реки. Разница лишь в том, что все это состоит не из воды, а из метана. Все спутники Сатурна, кроме Фебы, обращаются в прямом направлении. Феба движется по орбите с довольно большим эксцентриситетом в обратном направлении.
В 2000 году были найдены 12 спутников, получивших временные обозначения S/2000 S1 — S12. Точные орбиты для них еще определяются.
Система спутников Урана включает 27 спутников (20 спутников, имеющих названия, один спутник S/1986 U10, открытый в 1999 году по снимкам Вояджера, полученным в 1986 г. и спутник S/2001 U1, открытый в 2001 г.).
Система спутников Урана состоит из 15 регулярных спутников, движущихся в плоскости экватора Урана на почти круговых орбитах и 5 далеких нерегулярных спутников, открытых в 1997 и 1999 годах, движущихся на орбитах с большими наклонами и эксцентриситетами. Пять больших спутников Ариэль, Умбриэль, Титания, Оберон и Миранда были открыты при наземных наблюдениях Ласселом, Гершелем и Койпером. Они вращаются по орбитам плоскости которых практически совпадают между собой. Самый удивительный из них — Миранда, около 500 км в поперечнике. Его поверхность поражает разнообразием долин, ущелий и крутых скал. Кажется, что эта луна сплавлена из трех или четырех огромных каменных обломков. Возможно, они представляют собой остатки прежней луны, некогда столкнувшейся с астероидом, а теперь сумевшей вновь собрать воедино свои обломки.
Девять спутников открыты при пролете Вояджера в 1986 году. Они были названы именами действующих лиц пьес Шекспира — Корделия, Афелия, Бианка, Крессида, Дездемона, Джульетта, Порция, Розалинда и Белинда. Пятнадцатый спутник Пак был открыт Синнотом в 1985 году. В 1997 году были открыты два далеких нерегулярных спутника Урана — Калибан и Сикоракса. В 1999 г. найдены еще три далеких спутника, которые также получили имена действующих лиц пьесы Шекспира «Буря» — Просперо, Сетебос и Стефано. В 1999 году на снимках, сделанных 13 лет назад Вояджером 2, был открыт еще один спутник на орбите Белинды, который имеет предварительное обозначение S/1986 U10. В 2001 г. открыт еще один далекий спутник Урана S/2001 U1.
Вся система в целом отличается необычайным наклоном – ее плоскость почти перпендикулярна средней плоскости всех планетных орбит. Кроме спутников, вокруг Урана движется множество мелких частиц, образующих своеобразные кольца, совсем, однако, не похожие на знаменитые кольца Сатурна.
Система спутников Нептуна содержит 13 спутников, два из которых были открыты наземными наблюдениями — Тритон и Нереида, а шесть спутников открыты при пролете Вояджера — Наяда, Таласса, Деспина, Галатея, Ларисса и Протей. Тритон был открыт в 1846 г., через две недели после открытия самого Нептуна. По размерам и массе он больше Луны. Имеет обратное направление орбитального движения. Подобно Земле, Тритон имеет азотную атмосферу, а состоит он на семь десятых из твердой породы и на три десятых из воды. Вблизи южного полюса Тритона «Вояджер-2» сделал снимки красного льда, а на экваторе он сфотографировал голубой лед из замершего метана. На Тритоне имеются громадные скалы, изрезанные водяным льдом, а также бесчисленное количество кратеров. Нептун изменяет направление движения комет, попадающих в Солнечную систему извне. Возможно, некоторые из них сталкивались с Тритоном, и в результате этих соударений возникли его кратеры. На Тритоне есть темные полосы вулканического происхождения. Ученые полагают, что лед, состоящий из замерзшей воды, метана и азота, был извергнут из глубин Тритона через вулканы.
Спутник Нереида – очень небольшой, обладает сильно вытянутой орбитой. Расстояние спутников до планеты меняется в пределах от 1,5 до 9,6 млн. км. Направления орбитального движения – прямое. В 2002-03 г.г. открыты пять далеких спутника Нептуна, имеющих временные обозначения S/2002 N1- N4 и S/2003 N1.
У планеты Плутон также удалось обнаружить в 1978 г. спутник. Это спутник Харон Это открытие имеет большое значение, во-первых, потому что дает возможность более точно вычислить массу планеты по данным о периоде обращения спутника и, во-вторых, в связи с дискуссией о том, не является ли сам Плутон «потерявшимся» спутником Нептуна.
Вопрос о происхождении наблюдаемых систем спутников очень важен, он является одним из узловых вопросов современной космогонии.
Происхождение естественных спутников планет
В настоящее время открыто 136 спутников планет. В эпоху О.Ю. Шмидта их было известно в три раза меньше. В 3-м издании его «Четырех лекций о теории происхождения Земли» (1957 г.) высказана общая идея о происхождении спутников:
«При образовании планет, в процессе сближения частиц с крупными зародышами планет, некоторые из частиц, сталкиваясь, настолько теряли скорость, что выпадали из общего роя и начинали обращаться вокруг планеты. Таким образом, около планетного зародыша образуется сгущение — рой частиц, обращающихся около него по эллиптическим орбитам. Эти частицы также сталкиваются, изменяют свои орбиты. В уменьшенном масштабе в этих роях будут происходить те же процессы, что и при образовании планет. Большинство частиц упадет на планету (присоединится к ней), часть же их будет образовывать околопланетный рой и объединяться в самостоятельные зародыши — будущие спутники планет… При осреднении орбит частиц, образующих спутник, последний приобретает симметричную, т.е. близкую к круговой, орбиту, лежащую в плоскости экватора планеты».
Модель образования Луны, разработанную на основании этой идеи, стали позднее называть моделью коаккреции (на Западе «accretion» обозначает и «аккумуляция» и «аккреция», тогда как в русскоязычных работах «аккреция» обычно обозначает присоединение газовой среды, а «аккумуляция» — объединение твердых тел). Эта модель может быть применима к планетам земного типа, но она не исчерпывает всех разновидностей образования спутников. Так, у планет-гигантов на стадии аккреции газа должны образовываться не околопланетные рои, а аккреционные газопылевые диски. В поясе астероидов, где процессы аккумуляции давно сменились разрушительными столкновениями, образование спутников возможно лишь путем фрагментации более крупных родительских тел. Наконец, для системы Земля — Луна в последние два десятилетия рассматривается катастрофическое происхождение как альтернатива коаккреции. Ниже мы кратко обрисуем эти разновидности на примере Луны, галилеевых спутников Юпитера и астероидной пары Ида — Дактил.
Освоение Луны во второй половине ХХ в. позволило изучить ее внутреннее строение, состав, возраст многих участков поверхности, их геологию, а также приливную историю лунной орбиты. К сожалению, не удалось выработать единое мнение о происхождении Луны. Была отвергнута гипотеза Дарвина об отрыве Луны от быстровращающейся Земли, отпала гипотеза о захвате готовой Луны. Есть общее представление, что Луна образовалась в околоземном диске, но по поводу возникновения диска существуют две крайние версии.
В одной из них, согласно идее О.Ю. Шмидта, предполагается постепенное пополнение диска (роя) допланетным веществом, сопутствующее росту Земли, т.е. коаккреция. Модель разработана в ОИФЗ и позднее развита группой американских ученых из Аризонского университета и Института планетных наук в г. Тусоне, США. Показано, что в околоземной рой могло быть захвачено достаточно вещества для аккумуляции Луны, если во время роста Земли плотность частиц в ее непосредственной близости в несколько раз превышала плотность «фона» допланетных частиц. Массивный спутник с прямым направлением обращения вокруг Земли мог образоваться на расстоянии в 3 — 4 раза меньшем, чем современное расстояние до Луны, что вполне согласуется с ее последующим приливным отодвиганием. Главное отличие химического состава Луны от Земли — низкое содержание железа в Луне (6-10% по сравнению с 35% в Земле) — объясняется преимущественным захватом в околоземный рой наиболее мелкой фракции допланетных частиц, которые чаще сталкиваются друг с другом. При столкновениях сильнее дробятся каменистые породы, и мелкая пыль обогащается силикатами по отношению к железу. Одновременно теряются за счет испарения летучие и полулетучие компоненты, которыми, как известно, Луна обеднена. По определению Тусоновской группы, околоземный рой работает как «композиционный фильтр», и таким образом решается проблема различий химического состава Луны и Земли.
Сторонники катастрофического происхождения околоземного диска предполагают, что этот диск образовался при столкновении Земли с крупным допланетным телом, в 1,5 — 2 раза более массивным, чем Марс, — мегаимпакте. При надлежаще направленном касательном соударении выброшенный диск обладает и большой массой и достаточным угловым моментом для формирования в нем Луны. Решение проблемы химического состава Луны авторы гипотезы мегаимпакта видят в том, что и Земля и ударившее тело уже успели расслоиться на ядро и мантию Их железные ядра остались в Земле, затем объединились в одно ядро, а диск образовался из силикатных мантий. Необходимо сказать, что, как бы решая проблемы Луны в один прием, мегаимпакт сам создает проблемы. Так, энергия мегаимпакта при столкновении ударника с Землей со скоростью 14 — 15 км/c составляет более 1039 эрг. Этого достаточно, чтобы расплавить большую часть Земли, а также испарить какую-то ее часть. Образуется горячая силикатно-магниевая атмосфера, и Земля в течение 10 — 100 лет светит как коричневый карлик — звезда с температурой фотосферы 2000 К. Необходим критический анализ возможности такого этапа в ранней истории Земли. Гипотеза мегаимпакта не объясняет почти круговой характер орбиты Земли. Ее эксцентриситет в настоящее время равен 0,017, что согласуется с участием в аккумуляции Земли крупных тел вплоть до лунной массы, но не марсианской. Подсчет В.С. Сафронова и А.М. Фридмана показал, что при мегаимпакте эксцентриситет орбиты Земли был бы в 5 — 10 раз больше. Наконец, гипотеза мегаимпакта придумана специально для Луны, хотя, по мнению Д. Стивенсона, наилучшим «кандидатом» на такое происхождение служит система Урана с его спутниками. Не исключено, что сильный наклон оси Урана к оси эклиптики вызван ударом тела с массой, сравнимой с массой Земли, и следствием такого удара могло быть образование диска в одной плоскости с экватором Урана. Идентичность химического состава Урана и его спутников могла бы стать подтверждением этой идеи, но достоверных данных об этом пока нет.
Гипотеза коаккреции носит более универсальный характер. Спутники должны были появиться у всех четырех планет земной группы. Исчезновение спутников Венеры и Меркурия объясняется тем, что вращение этих планет сильно замедлено солнечными приливами, и их спутники, испытывая приливное воздействие своих планет, должны были приблизиться к ним и выпасть на поверхность. Особое место, которое занимает Луна среди спутников по величине ее орбитального углового момента, — также результат приливной эволюции. В прошлом Луна находилась в несколько раз ближе к Земле, а Земля вращалась быстрее, чем сейчас, так что соотношение моментов в системе Земля — Луна было иным. Луна на много порядков массивнее, чем спутники Марса. Масса Марса равна всего 0.1 МЕ, но модель коаккреции как раз предсказывает сильную нелинейную зависимость массы спутников от массы планеты. Наконец, газопылевые аккреционные диски вокруг растущих планет-гигантов можно считать аналогами околопланетных роев, состоящих из двух компонентов.
Систему спутников Юпитера часто сравнивают с миниатюрной Солнечной системой. Регулярный характер орбит галилеевых спутников и четырех малых спутников, обращающихся вблизи Юпитера, говорят об их образовании из газопылевого диска, хотя спутники не содержат легких газов. Их состав варьирует от безводного каменистого у Ио и малых спутников к каменистой Европе с ее ледяным покрытием в десятую долю массы и к смешанному составу Ганимеда и Каллисто, у которых примерно поровну льда и силикатов. Еще по наземным наблюдениям было известно закономерное убывание плотности спутников с расстоянием от Юпитера, и это правильно понималось как результат прогревания зоны спутников его излучением. Ранний Юпитер уподоблялся маленькому Солнцу. Космические исследования укрепили эту точку зрения, дав точные определения плотностей и химического состава спутников. В сочетании с моментами инерции эти данные позволяют сегодня уже строить вполне реальные многослойные модели внутреннего строения галилеевых спутников! Прообраз газопылевого диска Юпитера приходится создавать теоретически, на основании данных о массах спутников и в предположении о единстве состава диска и Юпитера, опираясь при этом на существующие модели аккреционных дисков у молодых звезд и Солнца. Масса диска могла достигать 10 МЕ, с учетом водорода и гелия; значительная часть этой массы выпала на Юпитер и рассеялась в пространство. Прямое вращение диска обусловливалось угловым моментом, которым обладал объем газа, забираемый из допланетного облака. Эта величина невелика, поскольку радиус диска в несколько десятков раз меньше размера гравитационной сферы Юпитера. Вещество спутников — это последние порции вещества, захваченного в диск, на заключительной стадии аккреции Юпитера, когда его фотосфера была еще горячей, до 1000 К. Одновременно с аккумуляцией спутников шла термическая диссипация газов из диска, для чего также было необходимо тепло от Юпитера. Происхождение маленьких нерегулярных спутников Юпитера, обращающихся далеко за пределами галилеевой системы, никак не связано с газово-пылевым диском. По предположению, это захваченные при взаимных столкновениях небольшие астероиды или их фрагменты.
В главном поясе астероидов давно уже известны семейства, т.е. группы астероидов, хотя и разбросанные в пространстве пояса, но имеющие одинаковые элементы орбит: большую полуось, эксцентриситет, наклонение. Есть все основания предполагать, что члены семейства образовались при фрагментации одного родительского тела при его столкновении с другим астероидом. Удивительно, что у некоторых астероидов обнаружились спутники (Земля и Вселенная, 2001, № 3). Первой зафиксированной парой оказались астероид 243 Ида и его спутник, названный впоследствии Дактил. Их снимки получены с помощью космического аппарата «Галилео» в 1993 г. на пути к Юпитеру. Ида имеет неправильную форму с наибольшим диаметром 56 км, она быстро вращается (период 4,65 ч). Астероид сильно кратерирован, что говорит о большом возрасте. Диаметр спутника — около 1,5 км. Оба принадлежат семейству Коронид, насчитывающему более 50 членов. Размер родительского тела оценивается в 90 км. На возможность существования спутников у астероидов в свое время указывал С. Вайденшиллинг. Если разрушительное столкновение происходит со скоростью 0,5 — 1,0 км/c, то образующиеся фрагменты могут быть крупными и разлетаться со скоростями в десятки м/c. Лабораторные эксперименты показали, что фрагменты, как правило, вращаются. Астероидная пара — это двойной фрагмент. Для удержания спутника необходимо, чтобы его относительная скорость была мала. Подсчет показал, что орбитальная скорость спутника Иды должна быть около 6 м/c, а уже при 10 м/c пара должна была бы разорваться. В поясе астероидов так мала пространственная плотность тел и низка вероятность возмущений, что долговременное существование пар вполне возможно. Тела оказывают приливное воздействие друг на друга, но из-за малости масс астероидов эти приливы чрезвычайно малы. Время приливной эволюции астероидных пар измеряется миллиардами лет.
Источник
➤ Adblockdetector