Атмосфера Солнца
Атмосферой Солнца называют три внешних слоя Солнца, расположенные выше конвективной зоны, и состоящие (по числу атомов) в основном из водорода, 10% гелия, 1/1000 углерода, азота и кислорода и 1/10 000 металлов вместе со всеми остальными химическими элементами.
Атмосферу Солнца принято разделять на фотосферу, хромосферу и корону, которая переходит в солнечный ветер.
Фотосфера
Фотосфера (перевод с греческого «сфера света») — слой атмосферы звезды,кажущаяся поверхность Солнца, В фотосфере формируется доходящий до нас непрерывный спектр оптического излучения звезд.
Толщина фотосферы Солнца — 300-400 км. Для Солнца температура в фотосфере уменьшается с высотой от 8000-10000 o К до минимальной на Солнце температуры около 4300 o К.
. Плотность фотосферы составляет от 10 -8 до 10 -9 г/смЗ (концентрация частиц от 10 15 до 10 16 1/см3), давление около 0.1 атм.
При таких условиях все атомы с небольшими потенциалами ионизации (в несколько вольт, например Na, K, Ca) оказываются ионизованными. Остальные элементы, в том числе водород, энергия ионизации которого 13.6 эВ, остаются преимущественно в нейтральном состоянии. Фотосфера — единственный на Солнце слой, где водород почти нейтрален.
Поверхность Фотосферы Солнца покрыта гранулами. Размер гранул от 200 до 2000 км, продолжительность их существования от 1 до 10 мин. Гранулы являются верхушками конвективных ячеек, расположенных в конвективной зоне.
Фотография солнечного пятна. По переферии — сетка гранул
Спектральные линии в гранулах и промежутках между ними смещены соответственно в синюю и красную стороны. Это означает, что в средней части гранул подфотосферное солнечное вещество поднимается на поверхность, а на краях гранул стекает вниз. Скорость этих движений составляет 1 — 2 км/с. Поэтому температура в центре гранул выше, чем на периферии. «Глубина» гранул, по-видимому, достигает нескольких сотен, а то и тысячи километров. Грануляция фотосферы практически не зависит от гелиоцентрической широты и фазы цикла СА.
Хромосфера
Хромосфера обнаруживается при полном солнечном затмении как тонкий окрашенный (розоватый) ободок вокруг Солнца. Отсюда и ее название.
Ее толщина около 15*10 3 км. Концентрация частиц в хромосфере ниже, чем в фотосфере, и уменьшается с высотой от 10 14 до 10 10 1/см3. Температура в хромосфере растет с высотой неравномерно: в нижней части — медленно,4500-4800 о К, а в средней и верхней частях — быстро, достигая на границе с короной в переходном слое значений 10 6 о К . В хромосфере по мере продвижения вверх последовательно ионизуются водород, гелий и др. химические элементы. До высоты 1500 км лежит сравнительно плотная нижняя хромосфера, а выше простираются средний (1500-4000 км) и верхний слои, отличающиеся очень неоднородной структурой.
Наиболее мелкие структурные образования в хромосфере называются спикулами. Они имеют продолговатую форму, причем вытянуты преимущественно в радиальном направлении. Длина их составляет несколько тысяч километров, а толщина — около одной тысячи километров. Со скоростями в несколько десятков километров в секунду спикулы поднимаются из хромосферы в корону и растворяются в ней. Таким образом, через спикулы происходит обмен веществом между хромосферой и вышележащей короной. Спикулы, в свою очередь, образуют более крупную структуру, называемую хромосферной сеткой. Она состоит из отдельных ячеек размером (30 -60 )*10 3 км.
Часто наблюдается фибрильная структура хромосферы, отражающая характер магнитных полей, вынесенных конвекцией из-под фотосферы в хромосферу, т.е. фибриллы — это петли магнитного поля на поверхности Солнца. Интенсивное появление фибрилл сопутствует рождению новой активной области на Солнце. В активные периоды в хромосфере Солнца наблюдают вспышки и флоккулы. (см солнечная активность)
Солнечная корона
Солнечная корона — самая внешняя и очень разреженная часть атмосферы Солнца, продолжающаяся в виде движущейся от Солнца плазмы — солнечного ветра — в межпланетное пространство. (см. Солнечный ветер)
Между хромосферой и короной находится переходная область, плотность в которой меняется от 10 -12 до 10 -15 г/см3 (концентрация частиц — от 10 12 до 10 9 1/см3), а температура — от 1*10 4 до 1,5*10 6 К. Рост температуры, определяется быстрым падением плотности вещества с высотой и накачкой энергии за счет процессов поглощения акустических и магнитозвуковыx волн, распространяющихся от фотосферы
Корону можно условно разделить на три зоны: внутреннюю (r 2,5 RC ).
Средняя температура короны 1,5*106 К. С высотой температура короны меняется мало. Плотность короны у переходной области
10 -15 г/смЗ (концентрация частиц 10 8 см-3), а на расстоянии 3RC плотность
6*10 -19 г/смЗ, (концентрация 4.10 5 см-3).
По своему составу корональный газ сходен с фотосферным. Атомы почти полностью лишены всех своих электронов, т.е. корона представляет собой практически полностью ионизированную плазму.
Структура короны довольно сложна, она включает в себя крупные образования, удаляющиеся от Солнца в виде «опахал» или в виде «лучей». Плотность вещества в этих образованиях, по-видимому, почти на порядок выше, чем в окружающей короне.
С другой стороны, в полярных областях постоянно существуют так называемые корональные дыры — области с аномально низкими температурами, с исключительно низкой плотностью.
Темные области на снимке в рентгене– корональные дыры
Их общая площадь достигает 15% от всей площади поверхности Солнца, на низких широтах площади корональных дыр меньше 2-5% площади поверхности Солнца. Время жизни одной дыры может превышать 5 оборотов Солнца (до 20 оборотов).
Корональные дыры связаны с униполярными областями в фотосфере.
В этих областях происходит усиление истечения плазмы солнечного ветра, оказывающего существенное влияние на геофизические явления.
Яркость короны в миллион раз меньше яркости фотосферы. Наблюдать солнечную корону невооруженным глазом можно только во время полной фазы солнечных затмений. Вне затмений с поверхности Земли корону наблюдают при помощи специальных телескопов — коронографов.
Корональные транзиенты Общее название коротроживущих изменений в короне, в основоном используется для описания выходящих из С. плазменных облаков — Корональных выбросов масс (Coronal Mass Ejection).
Этими мощными выбросами плазменного вещества уносится примерно половина общей энергии солнечной вспышки. CME проходит через солнечную корону и со скоростью порядка 1000 км/с достигает орбиты Земли через 1 – 2 суток. Солнечные корпускулярные потоки, взаимодействуя с земной магнитосферой, вызывают магнитные бури и магнитосферные суббури.
Магнитное поле Солнца разделяется на два типа — общее поле и локальные поля.
Общее магнитное поле Солнца — это поле полоидального типа, вытянутое вдоль солнечных меридианов и подобное полю дипольного типа. Его напряженность на уровне фотосферы составляет 1-2 Гс. Общее поле Солнца периодически, приблизительно раз в 11 лет меняет свою полярность на противоположную. Полный период Т = 22 года.
Общее поле состоит из множества мелких структур разной полярности и размеров, напряженностью до 10-20 Гс.
Локальные магнитные поля активных образований на Солнце разделяются на биполярные (ВМ) и униполярные (UM) области. Напряженность поля |B| в ВМ-областях варьирует от 0,1 до нескольких сотен гаусс. Знак поля различен в различных частях этих областей, и, поскольку они вытянуты вдоль линии восток-запад, в них всегда можно выделить ведущую (р) и ведомую (f) полярности. Эти полярности различны в северном и южном полушариях и меняют знак с началом каждого нового 11-летнего цикла.
UM-области по сравнению с ВМ-областями располагаются ближе к полюсам и имеют меньшую напряженность магнитного поля, но большую площадь и продолжительность жизни: для UM-области характерно В
5-7 оборотов Солнца. Развитие ВМ- и UM-областей предшествует появлению активных областей на Солнце и завершается после исчезновения.
Более подробную информацию по данному вопросу можно найти в разделах СиЗиФа
ОБЗОРЫ и СТАТЬИ, а также на страницах учебника.
Специально вопросам солнечной активности посвящен богато иллюстрированный раздел проекта Э.В. Кононовича ЖИЗНЬ ЗЕМЛИ В АТМОСФЕРЕ СОЛНЦА
Также смотри родственные разделы справочника:
Источник
Атмосфера Солнца
Солнце является одной из значимых звёзд нашей галактической системы под названием Млечный путь. В Солнечной системе это единственное светило, вокруг которого обращаются прочие объекты – спутники, планеты, астероиды, кометы, пыль из космоса. В статье будет рассмотрена атмосфера Солнца и её практическое значение для этого гигантского огненного шара.
Описательные характеристики
Атмосфера Солнца во многом определяется его составом. В нем присутствуют следующие элементы:
- водород, занимающий 73% массы;
- гелий, на который приходится 25% веса;
- прочие элементы, имеющие иную концентрацию.
1 млн. водородных атомов включает в себя:
- 98 000 гелиевых атомов;
- 851 кислородных элементов;
- 398 атомов углерода;
- 123 – неона;
- 100 – азота;
- 47 – железа;
- и т. д.
На массу светила приходится 99,866% массы всей Солнечной системы. Наша галактическая группа включает в свой состав 100-400 млрд звёзд. При этом 85% их являются менее яркими в сравнении с Солнцем. Как и все они, наше естественное светило производит выработку энергии за счёт реакции термоядерного синтеза. Выработка значительной её части происходит в ходе синтеза водорода, гелия.
Солнце является звездой, расположенной к Земле ближе всего. Средняя удалённость между объектами составляет 149,6 млн км. Значение его орбитальной скорости составляет 217 километров в секунду. На прохождение одного светового года ему требуется 1400 земных лет. На сегодняшний день звезда располагается в области внутреннего края рукава Ориона. Среди всех светил, имеющих отношение к 50-ти наиболее близким системам, Солнце занимает по яркости почётную четвёртую строчку.
Фотосфера
Атмосфера Солнца состоит из нескольких слоёв, одним из них является фотосфера. Она представлена видимой поверхностью, которая извергает базовую часть излучения. Слой обладает толщиной, равной 100-400 км, температурным значением, составляющим 6 600 К (минимум). Именно по этой части происходит определение размеров Солнца. Газ, находящийся здесь, является разреженным, а скоростное значение вращения зависит от конкретной области. В зоне экватора один оборот протекает за 24 дня, в районе полюсов – за 30 дней.
Хромосфера
Солнечная атмосфера представлена также хромосферой. Она является оболочкой, окружающей фотосферу, имеющей толщину в 2000 км. Для верхней границы характерны постоянные горячие выбросы. Эта часть является видимой исключительно во время полного затмения, когда она появляется в красных тонах.
Корона
Эта часть является последней. Для неё характерно присутствует протуберанцев, энергетических извержений. Их выплеск обычно происходит в радиусе сотен тысяч километров, что провоцирует возникновение солнечного ветра. Солнечная атмосфера в этой области имеет более высокую температуру – 1 000 000 К минимум, которая может достигать отметки в 2 000 000 К. В некоторых областях значение повышается до 8-9 тыс. Кельвинов. Однако увидеть эту часть можно исключительно во время солнечного затмения.
Для данной области характерно изменение формы, которое пребывает в зависимости от цикла солнечной активности. На максимуме её форма круглая, на минимуме – вытянутая (вдоль экваториальной части).
Ветер
Солнечная атмосфера имеет такое явление, как ветер, представленный потоком ионизированных элементов, которые выбрасываются из звезды в различных направлениях на скорости от 400 километров в секунду. В качестве источника, из которого исходит ветер, выступает солнечная корона. Её температура настолько высока, что гравитационная сила не может удерживать вещество неподалёку от поверхности, и его часть оказывается в пространстве между планетами. Несмотря на относительную изученность, многие детали, связанные с солнечным ветром, остаются неясными до сих пор.
Таким образом, солнечная атмосфера состоит из нескольких слоёв, различных по толщине, температуре, свойствам.
Источник
Атмосфера Солнца: Фотосфера, Хромосфера и Солнечная корона
Из чего состоит атмосфера нашей звезды, чем фотосфера отличается от хромосферы и почему у Солнца есть корона?
Земная атмосфера – это воздух, которым мы дышим, привычная нам газовая оболочка Земли. Такие оболочки есть и у других планет. Звезды целиком состоят из газа, но их внешние слои также именуют атмосферой. При этом внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь вышележащими слоями, уйти в окружающее пространство.
Фотосфера – атмосфера Солнца
Фотосфера – атмосфера Солнца начинается на 200-300 км глубже видимого края солнечного края. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трехтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца.
Фотосфера – солнечная атмосфера. Именно её мы, собственно, и видим с Земли
Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях.
Солнечная поверхность, наблюдаемая в телескоп в видимом диапазоне длин волн, представляется совокупностью ярких площадок, окружённых относительно тёмными тонкими промежутками. Это – солнечные гранулы, их размеры различны и составляют в среднем 700 км, “время жизни” (появление и угасание гранулы) примерно 8 мин. Гранулы разделяются тёмными промежутками шириной около 300 км.
Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К. При таких условиях почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохранятся относительно немного простейших молекул и радикалов типа H2, OH, CH.
Особую роль в солнечной атмосфере играет не встречающийся в земной природе отрицательный ион водорода, который представляет собой протон с двумя электронами. Это необычное соединение возникает в тонком внешнем, наиболее холодном слое фотосферы при “налипании” на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые поставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов.
При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы жадно поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растет. Поэтому видимый край Солнца и кажется нам очень резким.
Почти все наши знания о Солнце основаны на изучении его спектра – узенькой разноцветной полоски, имеющей ту же природу, что и радуга. Впервые, поставив призму на пути солнечного луча, такую полоску получил Ньютон и воскликнул: “Спектрум!” (лат. spectrum – “видение”). Позже в спектре Солнца заметили темные линии и сочли их границами цветов.
В телескоп с большим увеличением можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зернышками – гранулами, разделенными сетью узких темных дорожек. Грануляция является результатом перемешивания всплывающих более теплых потоков газа и опускающихся более холодных.
Разность температур между ними в наружных слоях сравнительно невелика (200-300 К), но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы. В конечном счете именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Магнитные поля участвуют во всех процессах на Солнце.
Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько тысяч раз более сильные, чем на Земле. Ионизованная плазма – хороший проводник, она не может перемещаться поперек линий магнитной индукции сильного магнитного поля. Поэтому в таких местах перемешивание и подъем горячих газов снизу тормозится, и возникает темная область – солнечное пятно. На фоне ослепительной фотосферы оно кажется совсем черным, хотя в действительности яркость его слабее только в десять.
С течением времени величина и форма пятен сильно меняются. Возникнув в виде едва заметной точки – поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Крупные пятна, как правило, состоят из темной части (ядра) и менее темной – полутени, структура которой придает пятну вид вихря. Пятна бывают окружены более яркими участками фотосферы, называемыми факелами или факельными полями.
Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы – хромосферу и солнечную корону.
Хромосфера Солнца
Хромосфера Солнца (греч. “сфера цвета”) названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг черного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы.
Во время полного солнечно затмения, когда диск Солнца скрыт от наших глаз, мы видим хромосферу – тонкий яркий ореол по краям солнечного диска
Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяженность хромосферы 10-15 тыс. километров.
Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в нее из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.
Наиболее распространены “спокойные” протуберанцы, появление которых обычно связано с развитием группы пятен, но существуют они значительно дольше пятен (до 1 года). Непосредственно в зоне пятен наблюдаются после вспышек, протуберанцы солнечных пятен – потоки газа, втекающего из короны в зону пятен со скоростями в неск. десятков км/с. Другой вид протуберанцев связан с выбросами вещества вверх (обычно после вспышек) со скоростями 100-1000 км/с (быстрые эруптивные протуберанцы).
Над поверхностью Солнца можно наблюдать причудливой формы “фонтаны”, “облака”, “воронки”, “кусты”, “арки” и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окруженными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из нее, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы – протуберанцы.
При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска темными, длинными и изогнутыми волокнами.
Протуберанцы имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца.
Впервые спектр протуберанца вне затмения наблюдали французский астроном Пьер Жансен и его английский коллега Джозеф Локьер в 1868 г. Щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протуберанец, то можно заметить спектр его излучения.
Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по частям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.
Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движение составляющих ее газов.
Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки (самые мощные взрывоподобные процессы, могут продолжаться всего несколько минут, но за это время выделяется энергия, которая иногда достигает 1025 Дж).
Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.
Пятна, факелы, протуберанцы, хромосферные вспышки – все это проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше.
Солнечная корона
Корона – в отличие от фотосферы и хромосферы самая внешняя часть атмосферы Солнца обладает огромной протяженностью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам, а ее слабое продолжение уходит еще дальше.
Солнечная корона, снимок сделан опять же во время полного солнечного затмения
Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Уменьшение плотности воздуха при подъеме вверх определяется притяжением Земли. На поверхности Солнца сила тяжести значительно больше, и, казалось бы, его атмосфера не должна быть высокой.
В действительности она необычайно обширна. Следовательно, имеются какие-то силы, действующие против притяжения Солнца. Эти силы связаны с огромными скоростями движения атомов и электронов в короне, разогретой до температуры 1-2 млн градусов!
Корону лучше всего наблюдать во время полной фазы солнечного затмения. Правда, за те несколько минут, что она длится, очень трудно зарисовать не только отдельные детали, но даже общий вид короны. Глаз наблюдателя едва лишь начинает привыкать к внезапно наступившим сумеркам, а появившийся из-за края Луны яркий луч Солнца уже возвещает о конце затмения. Поэтому часто зарисовки короны, выполненные опытными наблюдателями во время одного и того же затмения, сильно различались. Не удавалось даже точно определить ее цвет.
Изобретение фотографии дало астрономам объективный и документальный метод исследования. Однако получить хороший снимок короны тоже нелегко. Дело в том, что ближайшая к Солнцу ее часть, так называемая внутренняя корона, сравнительно яркая, в то время как далеко простирающаяся внешняя корона представляется очень бледным сиянием. Поэтому если на фотографиях хорошо видна внешняя корона, то внутренняя оказывается передержанной, а на снимках, где просматриваются детали внутренней короны, внешняя совершенно незаметна.
Чтобы преодолеть эту трудность, во время затмения обычно стараются получить сразу несколько снимков короны – с большими и маленькими выдержками. Или же корону фотографируют, помещая перед фотопластинкой специальный “радиальный” фильтр, ослабляющий кольцевые зоны ярких внутренних частей короны. На таких снимках ее структуру можно проследить до расстояний во много солнечных радиусов.
Уже первые удачные фотографии позволили обнаружить в короне большое количество деталей: корональные лучи, всевозможные “дуги”, “шлемы” и другие сложные образования, четко связанные с активными областями.
Главной особенностью короны является лучистая структура. Корональные лучи имеют самую разнообразную форму: иногда они короткие, иногда длинные, бывают лучи прямые, а иногда они сильно изогнуты. Еще в 1897 г. пулковский астроном Алексей Павлович Ганский обнаружил, что общий вид солнечной короны периодически меняется. Оказалось, что это связано с 11-летним циклом солнечной активности.
С 11-летним периодом меняется как общая яркость, так и форма солнечной короны.
В эпоху максимума солнечных пятен она имеет сравнительно округлую форму. Прямые и направленные вдоль радиуса Солнца лучи короны наблюдаются как у солнечного экватора, так и в полярных областях. Когда же пятен мало, корональные лучи образуются лишь в экваториальных и средних широтах. Форма короны становится вытянутой. У полюсов появляются характерные короткие лучи, так называемые полярные щеточки. При этом общая яркость короны уменьшается.
Эта интересная особенность короны, по видимому, связана с постепенным перемещением в течении 11-летнего цикла зоны преимущественного образования пятен. После минимума пятна начинают возникать по обе стороны от экватора на широтах 30-40°. Затем зона пятнообразования постепенно опускается к экватору.
Тщательные исследования позволили установить, что между структурой короны и отдельными образованиями в атмосфере Солнца существуют определенная связь. Например, над пятнами и факелами обычно наблюдаются яркие и прямые корональные лучи. В их сторону изгибаются соседние лучи. В основании корональных лучей яркость хромосферы увеличивается.
Такую ее область называют обычно возбужденной. Она горячее и плотнее соседних, невозбужденных областей. Над пятнами в короне наблюдаются яркие сложные образования. Протуберанцы также часто бывают окружены оболочками из корональной материи.
Корона оказалась уникальной естественной лабораторией, в которой можно наблюдать вещество в самых необычных и недостижимых на Земле условиях.
На рубеже XIX-XX столетий, когда физика плазмы фактически еще не существовала, наблюдаемые особенности короны представлялись необъяснимой загадкой. Так, по цвету корона удивительно похожа на Солнце, как будто его свет отражается зеркалом. При этом, однако, во внутренней короне совсем исчезают характерные для солнечного спектра фраунгоферовы линии. Они вновь появляются далеко от края Солнца, во внешней короне, но уже очень слабые.
Кроме того, свет короны поляризован: плоскости, в которых колеблются световые волны, располагаются в основном касательно к солнечному диску. С удалением от Солнца доля поляризованных лучей сначала увеличивается (почти до 50%), а затем уменьшается. Наконец, в спектре короны появляются яркие эмиссионные линии, которые почти до середины XX в. не удалось отождествить ни с одним из известных химических элементов.
Оказалось, что главная причина всех этих особенностей короны – высокая температура сильно разреженного газа. При температуре свыше 1 млн градусов средние скорости атомов водорода превышают 100 км/с, а у свободных электронов они еще раз в 40 больше. При таких скоростях, несмотря на сильную разреженность вещества (всего 100 млн частиц в куб см, что в 100 млрд раз разреженнее воздуха на Земле!), сравнительно часты столкновения атомов, особенно с электронами.
Силы электронных ударов так велики, что атомы легких элементов практически полностью лишаются всех своих электронов и от них остаются лишь “голые” атомные ядра. Более тяжелые элементы сохраняют самые глубокие электронные оболочки, переходя в состояние высокой степени ионизации.
Итак, корональный газ – это высокоионизованная плазма; она состоит из множества положительно заряженных ионов всевозможных химических элементов и чуть большего количества свободных электронов, возникающих при ионизации атомов водорода (по одному электрону), гелия (по два электрона) и более тяжелых атомов.
Поскольку в таком газе основную роль играют подвижные электроны, его часто называют электронным газом, хотя при этом подразумевается наличие такого количества положительных ионов, которое полностью обеспечивало бы нейтральность плазмы в целом.
Белый цвет короны объясняется рассеиванием обычного солнечного света на свободных электронах. Они не вкладывают своей энергии при рассеивании: колеблясь в такт световой волны, они лишь изменяют направление рассеиваемого света, при этом поляризуя его. Таинственные яркие линии в спектре порождены необычным излучением высокоионизированных атомов железа, аргона, никеля, кальция и других элементов, возникающим только в условиях сильного разрежения.
Наконец, линии поглощения во внешней короне вызваны рассеиванием на пылевых частицах, которые постоянно присутствуют в межзвездной среде. А отсутствие линии во внутренней короне связано с тем, что при рассеянии на очень быстро движущихся электронах все световые кванты испытывают столь значительные изменения частот, что даже сильные фраунгоферовы линии солнечного спектра полностью “замываются”.
Итак, корона Солнца – самая внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам: оказывается, она простирается далеко от Солнца в виде постоянно движущегося от него потоках плазмы – солнечного ветра. Вблизи Земли его скорость составляет в среднем 400-500 км/с, а порой достигает почти 1000 км/с.
Распространяясь далеко за пределы орбит Юпитера и Сатурна, солнечный ветер образует гигантскую гелиосферу, граничащую с еще более разреженной межзвездной средой.
Фактически мы живем окруженные солнечной короной, хотя и защищенные от ее проникающей радиации надежным барьером в виде земного магнитного поля. Через корону солнечная активность влияет на многие процессы, происходящие на Земле (геофизические явления).
Источник