ИНФОФИЗ — мой мир.
Весь мир в твоих руках — все будет так, как ты захочешь
Весь мир в твоих руках — все будет так, как ты захочешь
Как сказал.
Есть только два способа прожить жизнь. Первый — будто чудес не существует. Второй — будто кругом одни чудеса.
А.Эйнштейн
Вопросы к экзамену
Для всех групп технического профиля
Список лекций по физике за 1,2 семестр
Урок 08. Практическая работа № 2 «Законы Кеплера. Определение масс небесных тел»
Тема: Законы Кеплера. Определение масс небесных тел
Цель занятия: Освоить методику решения задач, используя законы движения планет.
Теоретические сведения
При решении задач неизвестное движение сравнивается с уже известным путём применения законов Кеплера и формул синодического периода обращения.
Первый закон Кеплера. Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.
Второй закон Кеплера. Радиус-вектор планеты описывает в равные времена равные площади.
Третий закон Кеплера. Квадраты времен обращения планет относятся как кубы больших полуосей их орбит:
Для определения масс небесных тел применяют обобщённый третий закон Кеплера с учётом сил всемирного тяготения:
,
где М1 и М2 -массы каких-либо небесных тел, а m1 и m2 — соответственно массы их спутников.
Обобщённый третий закон Кеплера применим и к другим системам, например, к движению планеты вокруг Солнца и спутника вокруг планеты. Для этого сравнивают движение Луны вокруг Земли с движением спутника вокруг той планеты, массу которой определяют, и при этом массами спутников в сравнении с массой центрального тела пренебрегают. При этом в исходной формуле индекс надо отнести к движению Луны вокруг Земли массой , а индекс 2 –к движению любого спутника вокруг планеты массой . Тогда масса планеты вычисляется по формуле:
,
где Тл и α л— период и большая полуось орбиты спутника планеты , М⊕ -масса Земли.
Формулы, определяющие соотношение между сидерическим (звёздным) Т и синодическим периодами S планеты и периодом обращения Земли , выраженными в годах или сутках,
а) для внешней планеты формула имеет вид:
б) для внутренней планеты:
Выполнение работы
Задание 1. За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?
Задание 2. Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км
Задание 3. Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?
Задание 4. Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.
Задание 5. Марс дальше от Солнца, чем Земля, в 1.5 раза. Какова продолжительность года на Марсе? Орбиты планет считать круговыми.
Задание 6. Синодический период планеты 500 суток. Определите большую полуось её орбиты и звёздный (сидерический) период обращения.
Задание 7. Определить период обращения астероида Белоруссия если большая полуось его орбиты а=2,4 а.е.
Задание 8. Звёздный период обращения Юпитера вокруг Солнца Т=12 лет. Каково среднее расстояние от Юпитера до Солнца?
Примеры решения задач 1-4
Задание 1. За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?
Задание 2. Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км
Задание 3. Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?
Задание 4. Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.
Источник
По каким траекториям движутся космические аппараты к Луне от Земли?
Задание 1: Написать конспект.
Теоретические сведения
При решении задач неизвестное движение сравнивается с уже известным путём применения законов Кеплера и формул синодического периода обращения.
Первый закон Кеплера. Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.
Второй закон Кеплера. Радиус-вектор планеты описывает в равные времена равные площади.
Третий закон Кеплера. Квадраты времен обращения планет относятся как кубы больших полуосей их орбит:
Для определения масс небесных тел применяют обобщённый третий закон Кеплера с учётом сил всемирного тяготения:
,
где М1 и М2 -массы каких-либо небесных тел, а m1 и m2 — соответственно массы их спутников.
Обобщённый третий закон Кеплера применим и к другим системам, например, к движению планеты вокруг Солнца и спутника вокруг планеты. Для этого сравнивают движение Луны вокруг Земли с движением спутника вокруг той планеты, массу которой определяют, и при этом массами спутников в сравнении с массой центрального тела пренебрегают. При этом в исходной формуле индекс надо отнести к движению Луны вокруг Земли массой , а индекс 2 –к движению любого спутника вокруг планеты массой . Тогда масса планеты вычисляется по формуле:
,
где Тл и αл— период и большая полуось орбиты спутника планеты , М⊕ -масса Земли.
Формулы, определяющие соотношение между сидерическим (звёздным) Т и синодическим периодами S планеты и периодом обращения Земли , выраженными в годах или сутках,
а) для внешней планеты формула имеет вид:
б) для внутренней планеты:
Задание 2: Выполнить задачи. В тестовой части записать только ответы, практические задачи решить с развернутым ответом.
Какие небесные явления происходят при данных конфигурациях небесных тел:
1. Если А — планета Марс; В — Земля; С — Солнце, произойдет:
1) солнечное затмение; 2) лунное затмение; 3) противостояние; 4) верхнее соединение; 5) нижнее соединение; 6) покрытие.
2. Если А — Земля; В — Солнце; С — планета Венера, произойдет:
1) солнечное затмение; 2) лунное затмение; 3) противостояние;
4) верхнее соединение; 5) нижнее соединение; 6) покрытие.
3. В нижнем соединении не могут находиться … планеты:
1) внешние; 2) внутренние; 3) нижние планеты.
4. Рядом с Луной во время полнолуния могут быть видны … планеты:
1) только внутренние; 2) только внешние; 3) как внутренние, так и внешние; 4) во время полнолуния рядом с Луной планеты нельзя наблюдать.
5. Максимальное угловое отклонение от Солнца наблюдается у:
1) Венеры; 2) Меркурия; 3) Марса.
Как меняется значение скорости движения кометы при ее перемещении от перигелия к афелию?
1) не изменяется; 2) увеличивается; 3) уменьшается; 4) скорость кометы не зависит от положения на орбите.
По каким траекториям движутся космические аппараты к Луне от Земли?
1) по параболе; 2) по эллипсу, в одном из фокусов которого находится Земля; 3) по эллипсу, в одном из фокусов которого находится Солнце; 4) по прямой.
Практические задачи.
Задание 1. Марс дальше от Солнца, чем Земля, в 1.5 раза. Какова продолжительность года на Марсе? Орбиты планет считать круговыми.
Задание 2. Синодический период планеты 500 суток. Определите большую полуось её орбиты и звёздный (сидерический) период обращения.
Задание 3. Определить период обращения астероида Белоруссия если большая полуось его орбиты а=2,4 а.е.
Задание 4. Звёздный период обращения Юпитера вокруг Солнца Т=12 лет. Каково среднее расстояние от Юпитера до Солнца?
Дата добавления: 2020-04-25 ; просмотров: 510 ; Мы поможем в написании вашей работы!
Источник
Максимальное угловое отклонение от солнца наблюдается у 1 венеры 2 меркурия 3 марса
§ 11. К онфигурация планет. С инодический период
1. Конфигурация планет и условия их видимости
У словия видимости планет Подробные сведения о положении планет и условиях их видимости даются в «Школьном астрономическом календаре» на каждый учебный год. Эту информацию можно найти и в Интернете. меняются по-разному: если Меркурий и Венеру можно видеть только утром или вечером, то остальные — Марс, Юпитер и Сатурн — бывают видны также и ночью. По временам одна или несколько планет могут быть вовсе не видны, поскольку они располагаются на небе поблизости от Солнца. В этом случае говорят, что планета находится в соединении с Солнцем. Если же планета располагается на небе вблизи точки, диаметрально противоположной Солнцу, то она находится в противостоянии . В этом случае планета появляется над горизонтом в то время, когда Солнце заходит, а заходит она одновременно с восходом Солнца. Следовательно, всю ночь планета находится над горизонтом.
Соединение и противостояние, а также другие характерные расположения планеты относительно Солнца называются конфигурациями . Внутренние планеты (Меркурий и Венера), которые всегда находятся внутри земной орбиты, и внешние, которые движутся вне её (все остальные планеты), меняют свои конфигурации по-разному. Названия различных конфигураций внутренних и внешних планет, которые характеризуют расположение планеты относительно Солнца на небе, приведены в таблице и на рисунке 3.4.
Рис. 3.4. Конфигурации внутренней и внешней планеты
Источник
Видимое движение планет на небесной сфере
Внутренние и внешние планеты Солнечно системы и их движение — наблюдение Венеры, Марса, Юпитера и Меркурия на ночном небе
Внутренние и внешние планеты Солнечно системы и их движение
В состав Солнечной системы входит девять планет, пять из которых видны невооруженным глазом. Это планеты Меркурий, Венера, Марс, Юпитер и Сатурн.
Среди звезд планеты выделяются своей яркостью, но их видимое положение относительно звезд непостоянно. Они непрерывно перемещаются по небу, как бы блуждают среди звезд. Видимое движение планет происходит вблизи эклиптики, т. е. в поясе зодиакальных созвездий. В отличие от видимого движения Солнца и Луны оно имеет сложный характер, так как является отражением действительных движений Земли и планет по их орбитам вокруг Солнца.
По положению своих орбит относительно орбиты Земли планеты делятся на внутренние и внешние. Внутренние планеты обращаются вокруг Солнца внутри орбиты Земли, а внешние—за ее пределами. К внутренним планетам относятся Меркурий и Венера, а к внешним — Марс, Юпитер, Сатурн, Уран, Нептун и Плутон.
Характер видимого движения и условия наблюдения внутренних и внешних планет различны.
Наблюдение движения внутренних планет Солнечной системы
Видимое с Земли движение внутренних планет солнечной системы
Период обращения внутренней планеты вокруг Солнца меньше периода вращения Земли- Поэтому она в движении по своей орбите будет опережать Землю и последовательно проходить через точки 1, 2, 3 и 4. Когда планета проходит между Землей и Солнцем и находится в точке 1, она земному наблюдателю не видна, так как в это время к Земле обращена неосвещенная сторона планеты. Спустя некоторое время после прохождения точки 1, планета становится видимой и наблюдателю будет казаться, что она относительно Солнца отклоняется вправо.
Когда планета достигнет точки 2, наблюдатель увидит ее на небесной сфере в точке А. Затем в своем видимом движении планета совершает среди звезд петлю и начинает двигаться в обратном направлении. Удаление ее от Солнца уменьшается, она постепенно скрывается в его лучах и заходит одновременно с ним. В это время планета проходит за Солнцем. Через некоторое время планета становится снова видимой, но теперь уже слева от Солнца. Достигнув предельного отклонения от Солнца влево, планета в точке В снова делает петлю, меняет направление своего движения и затем начинает приближаться к Солнцу.
Таким образом, видимое движение внутренней планеты представляется как бы колебанием ее около Солнца.
При положении планеты справа от Солнца она наблюдается на небесной сфере как утренняя звезда, а при положении слева — как вечерняя звезда.
Наиболее благоприятными условиями наблюдения внутренних планет являются условия, при которых они находятся вбизи точек наибольшего углового отклонения от Солнца.
У Меркурия максимальное угловое отклонение достигает 28°, а у Венеры — 48°. Поскольку Меркурий находится близко к Солнцу, то наблюдать его трудно. Даже при максимальном угловом отклонении от Солнца его можно наблюдать только в сумерках вскоре после захода Солнца или непосредственно перед восходом Солнца. Венера при наибольшем угловом отклонении восходит примерно за 3—4 ч до восхода Солнца, а при вечерней видимости через столько же времени заходит после захода Солнца.
Наблюдение движения внешних планет Солнечной системы
Внешние планеты Солнечной системы обращаются вокруг Солнца на куда более далеком расстоянии, чем Земля. Поэтому характер их видимого движения несколько иной, чем у внутренних планет.
При наблюдении, среди звезд внешние планеты перемещаются заметно медленнее видимого годового движения Солнца. Наиболее быстрое видимое движение из внешних планет имеет Марс, который расположен ближе всего к Земле.
Видимое с Земли движение внешних планет солнечной системы
Рисунок выше иллюстрирует схематичное изображение процесса наблюдения внешней планеты. Так как Земля движется по своей орбите с большей скоростью, чем более удаленная от Солнца планета, то при прохождении Земли через точки 1 и 2 наблюдателю будет казаться, что планета переместилась по небесной сфере из точки А в точку В.
При дальнейшем движении Земли от точки 2 планета в своем видимом движении сделает петлю у точки В и затем начинает двигаться в обратном направлении. В тот момент, когда Земля придет в точку 3, наблюдатель увидит планету на небесной сфере в точке С. При движении Земли от точки 3 планета сделает петлю около точки С и снова начнет прямое движение.
Для внешних планет наилучшими условиями их наблюдения будут периоды, когда они находятся в противостоянии.
Противостоянием называется положение планеты на небесной сфере относительно Земли в направлении, противоположном Солнцу. В противостоянии планета наблюдается в нулевой фазе (диск освещен полностью) – поэтому это положение планеты является самым удобным для ее наблюдения.
В период противостояния планета находится в созвездии, противоположном тому, в котором в это время находится Солнце. Следовательно, в этом положении планета может быть видна на небе всю ночь.
Источник