Как выглядит самая маленькая частица во Вселенной?
Многие из вас могут наивно полагать, что самой маленькой частицей во Вселенной является атом. Что же, атом действительно считался мельчайшей и неделимой частицей вплоть до открытия в 1897 году Джозефом Томпсоном электрона; протона, который был открыт в 1920 году Эрнестом Резерфордом, а в 1932 году и нейтрона, который впервые был обнаружен английским физиком Джеймсом Чедвиком. Спустя почти 100 лет, мы знаем, что все во Вселенной состоит из кварков — загадочных частиц, которые принимают активное участие в гравитационных и электромагнитных взаимодействиях. Так что же такое кварк и как он выглядит?
Кварки — самая маленькая частица во Вселенной
Что такое кварк?
Кварк — наименьшая частица мироздания. Именно из кварков состоят все электроны, нейтроны и протоны атомов, каждый из которых был образован 13,7 миллиардов лет назад сразу после Большого Взрыва. Спустя несколько минут после рождения Вселенной, наше мироздание смогло остынуть настолько, что смогли образоваться первые элементарные частицы — кварки и электроны. Кварки соединились друг с другом, образовав ядро атомов. Спустя примерно 400 000 лет Вселенная смогла остынуть настолько, что произошло замедление в движении электронов, позволив атомным ядрам их захватить. Именно таким образом все видимое и невидимое нам пространство смогло обзавестись первыми атомами гелия и водорода, которые, между прочим, все еще остаются самыми распространенными веществами во Вселенной.
Как выглядят атомные частицы?
Наиболее крупными атомными частицами считаются протоны и нейтроны, которые несколько тяжелее электронов и располагаются прямо в самом центре атома. Электроны же образуют легковесное облако, которое вращается вокруг атомного ядра. Известно, что вес 1800 электронов соответствует одному тяжеловесу-протону. Помимо этого, добавление хотя бы одного протона к атому приводит к образованию нового вещества с отличными от оригинала свойствами, причем добавление лишнего нейтрона создает всего лишь изотоп вещества или же просто более тяжелую его версию.
Ядро атома состоит из протонов, нейтронов и электронов, которые, в свою очередь, состоят из кварков
Наиболее крупными атомными частицами считаются протоны и нейтроны, которые несколько тяжелее электронов и располагаются прямо в самом центре атома. Электроны же образуют легковесное облако, которое вращается вокруг атомного ядра. Известно, что вес 1800 электронов соответствует одному тяжеловесу-протону. Помимо этого, добавление хотя бы одного протона к атому приводит к образованию нового вещества с отличными от оригинала свойствами, причем добавление лишнего нейтрона создает всего лишь изотоп вещества или же просто более тяжелую его версию.
Как уже говорилось выше, абсолютно все элементарные частицы состоят из кварков. которые представляют из себя основу мироздания. Интересный факт: Название “кварк” было взято в одном из романов известного в XX веке писателя-модерниста Джеймса Джойса, который необычным словом решил обозначить звук, воспроизводимый утками.
Джеймс Джойс — писатель, благодаря которому появился термин «кварки»
Сами же кварки подразделяются на 6 так называемых “ароматов”, каждый из которых обладает своими собственными характеристиками или “цветом”. Кроме того, каждый из 6 типов кварков обладает и собственным весьма оригинальным именем. Так, помимо нижнего и верхнего видов кварков, существуют также странный, очарованный, прелестный и истинный кварки.
Конечно же, “странность” или “прелестность” кварков сильно отличаются от привычных нам понятий. Точно так же, как и понятие цвета кварков на самом деле имеет в виду далеко не их оттенок, но способ взаимодействия кварков и других микрочастиц — глюонов. Что ж, фантазия ученых иногда умеет удивлять.
Если вам нравится данная статья, предлагаю вам посетить наш канал на Яндекс.Дзен, где вы сможете найти еще больше полезной информации из мира науки и техники.
В любом случае, кварки представляют из себя по-настоящему уникальные частицы, от которых во всех смыслах зависит существование нашей Вселенной в том виде, в котором мы ее знаем. Быть может, тайна возникновения Большого взрыва и наше постижение основных законов Вселенной действительно зависят от одной крошечной песчинки, которая в тысячи и тысячи раз меньше атома.
Источник
Какая самая маленькая частица во Вселенной существует
Ответ на непрекращающийся вопрос: какая самая маленькая частица во Вселенной эволюционировал вместе с человечеством.
Люди когда-то думали, что песчинки были строительными блоками того, что мы видим вокруг нас. Затем был обнаружен атом, и он считался неделимым, пока он не был расщеплен, чтобы выявить протоны, нейтроны и электроны внутри. Они тоже не оказались самыми маленькими частицами во Вселенной, так как ученые обнаружили, что протоны и нейтроны состоят из трех кварков каждый.
Пока ученые не смогли увидеть никаких доказательств того, что внутри кварков что-то есть и достигнут самый фундаментальный слой материи или самая маленькая частица во Вселенной.
И даже если кварки и электроны неделимы ученые не знают, являются ли они наименьшими битами материи в существовании или если Вселенная содержит объекты, которые являются еще более мелкими.
Самые мельчайшие частицы Вселенной
Они бывают разных вкусов и размеров, некоторые имеют удивительную связь, другие по существу испаряют друг друга, многие из них имеют фантастические названия: кварки состоящие из барионов и мезонов, нейтроны и протоны, нуклоны, гипероны, мезоны, барионы, нуклоны, фотоны и т.д.
Бозон Хиггса
Бозон Хиггса, настолько важная для науки частица, что ее называют “частицей Бога”. Считается, что она определяет массу всем другим. Элемент был впервые теоретизирован в 1964 году, когда ученые задавались вопросом, почему некоторые частицы более массивны, чем другие.
Бозон Хиггса связан с так называемым полем Хиггса который, как полагают, заполняют Вселенную. Два элемента (квант поля Хиггса и бозон Хиггса), ответственны за то, чтобы дать другим массу. Названа в честь шотландского ученого Питера Хиггса. С помощью адронного коллайдера 14 марта 2013 г. официально объявлено о подтверждении существования Бозона Хиггса.
Многие ученые утверждают, что механизм Хиггса разрешил недостающую часть головоломки, чтобы завершить существующую “стандартную модель” физики, которая описывает известные частицы.
Кварки
Кварки (в переводе бредовые) строительные блоки протонов и нейтронов. Они никогда не одиноки, существуя только в группах. По-видимому, сила, которая связывает кварки вместе, увеличивается с расстоянием, поэтому чем дальше, тем труднее их будет разнять. Поэтому свободные кварки никогда не существуют в природе.
Кварки фундаментальные частицы являются бесструктурными, точечными размером примерно 10 −16 см.
Например, протоны и нейтроны состоят из трех кварков, причем протоны содержат два одинаковых кварка, в то время как нейтроны имеют два разных.
Суперсимметричность
Известно, что фундаментальные «кирпичики» материи фермионы это кварки и лептоны, а хранители силы бозоны это фотоны, глюоны. Теория суперсимметрии говорит о том, что фермионы и бозоны могут превращаться друг в друга.
Предсказываемая теория утверждает, что для каждой известной нам частицы есть родственная, которую мы еще не обнаружили. Например, для электрона это селекрон, кварка – скварк, фотона –фотино, хиггса — хиггсино.
Почему мы не наблюдаем этой суперсимметрии во Вселенной сейчас? Ученые считают, что они намного тяжелее, чем их обычные родственные частицы и чем тяжелее, тем короче их срок службы. По сути, они начинают разрушаться, как только возникают. Создание суперсимметрии требует весьма большого количества энергии, которая только существовала вскоре после большого взрыва и возможно может быть создана в больших ускорителях как большой адронный коллайдер.
Что касается того, почему симметрия возникла, физики предполагают, что симметрия, возможно, была нарушена в каком-то скрытом секторе Вселенной, который мы не можем видеть или касаться, но можем чувствовать только гравитационно.
Нейтрино
Нейтрино легкие субатомные частицы, которые свистят везде с близкой скоростью света. На самом деле, триллионы нейтрино текут через ваше тело в любой момент, хотя они редко взаимодействуют с нормальной материей.
Некоторые нейтрино происходят от солнца, в то время как другие от космических лучей, взаимодействующих с атмосферой Земли и астрономическими источниками, такими как взрывающиеся звезды на Млечном пути и другие далекие галактики.
Антивещество
Считается, что все нормальные частицы имеют антивещества с одинаковой массой, но противоположным зарядом. Когда материя и антивещество встречаются, они уничтожают друг друга. Например, частица антиматерии протона является антипротоном, в то время как партнер антиматерии электрона называется позитроном. Антивещество относится к самым дорогим веществам в мире которые смогли определить люди.
Гравитоны
В области квантовой механики все фундаментальные силы передаются частицами. Например, свет состоит из безмассовых частиц, называемых фотонами, которые несут электромагнитную силу. Точно также гравитон является теоретической частицей, которая несет в себе силу гравитации. Ученым еще предстоит обнаружить гравитоны, которые сложно найти, потому что они так слабо взаимодействуют с веществом.
Нити энергии
В экспериментах крошечные частицы, такие как кварки и электроны, действуют как одиночные точки материи без пространственного распределения. Но точечные объекты усложняют законы физики. Поскольку нельзя приблизиться бесконечно близко к точке, так как действующие силы, могут стать бесконечно большими.
Идея под названием теория суперструн может решить эту проблему. Теория утверждает, что все частицы, вместо того, чтобы быть точечными, на самом деле являются маленькими нитями энергии. Тоесть все объекты нашего мира состоят из вибрирующих нитей и мембран энергии. Ничто не может быть бесконечно близко к нити, потому что одна часть всегда будет немного ближе, чем другая. Эта “лазейка”, похоже, решает некоторые из проблем бесконечности, делая идею привлекательной для физиков. Тем не менее, у ученых до сих пор нет экспериментальных доказательств того, что теория струн верна.
Другой способ решения точечной проблемы – сказать, что само пространство не является непрерывным и гладким, а на самом деле состоит из дискретных пикселей или зерен, иногда называемых пространственно-временной структурой. В этом случае две частицы не смогут бесконечно приближаться друг к другу, потому что они всегда должны быть разделены минимальным размером зерна пространства.
Точка черной дыры
Еще одним претендентом на звание самая маленькая частица во Вселенной является сингулярность (единственная точка) в центре черной дыры. Черные дыры образуются, когда вещество конденсируется в достаточно маленьком пространстве, которое захватывает гравитация, заставляя вещество втянуть вовнутрь, в конечном итоге конденсируясь в единую точку бесконечной плотности. По крайней мере по действующим законам физики.
Но большинство экспертов не считают черные дыры действительно бесконечно плотными. Они считают, что эта бесконечность является результатом внутреннего конфликта между двумя действующими теориями – общей теорией относительностью и квантовой механикой. Они предполагают, что когда теория квантовой гравитации может быть сформулирована, истинная природа черных дыр будет раскрыта.
Планковская длина
Нити энергии и даже самая маленькая частица во Вселенной может оказаться размером с “длину планка”.
Планковская длина – «естественная единица» измерения длины, которая была предложена немецким физиком Максом Планком.
Длина Планка слишком мала для любого инструмента, чтобы измерить, но помимо этого, считается, что она представляет собой теоретический предел кратчайшей измеримой длины. Согласно принципу неопределенности, ни один инструмент никогда не должен быть в состоянии измерить что-либо меньшее, потому что в этом диапазоне Вселенная вероятностная и неопределенная.
Эта шкала также считается разграничительной линией между общей теорией относительности и квантовой механикой.
Планковская длина соответствует расстоянию, где гравитационное поле настолько сильно, что оно может начать делать черные дыры из энергии поля.
Очевидно сейчас, самая маленькая частица во Вселенной примерно размером с длину планка: 1,6·10 −35 метров
Выводы
Однако физики уже оперируют с самыми маленькими частицами во Вселенной планковского размера который равняется примерно 1,6 х 10 −35 метров.
Источник
Самая маленькая частица во вселенной
Рейтинг самых маленьких частиц, которые существуют
Огромна наша вселенная. Удивительно прекрасная и сказочная реальность находится рядом. С древнейших времён пытались понять наш мир мудрецы и учёные. Постепенно начала складываться картина мира, представление о нём, которое имеется теперь.
Вероятно, эта картина ещё не раз будет дополнена новыми подробностями и отбросом в сторону заблуждений, которые сейчас кажутся истиной.
Но главные тропинки к пониманию, из чего же состоит окружающий большой космос и материя – уже пройдены. И пусть много ещё непонятного, но уже есть фундамент – знания о мельчайших частицах вселенной. Вот сведения о 10 таких частицах.
Электрон
Люди уже почти сотню лет пользуются энергией, извлекаемой из потока этих малых объектов. Но до сих пор до конца понять их строение так и не смогли.
Так как это противоречит человеческой логике и здравому смыслу. Трудно представить облако, похожее на плазму, составные части которой находятся почти везде внутри этого облака. Который находится как размазанная орбита в атоме вокруг ядра.
Это не просто облако или орбита, а бублик. Водород имеет один такой бублик. А литий два. Хотя электронов, частиц и одновременно плазменных образований – три. Есть отчего прийти в недоумение. В школьном курсе химии и физики даются упрощённые представления о строении вещества. Надо это знать и помнить.
Позитрон
Это та же частица, что и предыдущая, но только с обратным знаком. Так уж случилось, что в нашем мире электронов подавляющее большинство, чем его антипода. Хотя, возможно, есть такие области космического пространства, где позитронов больше.
В нашем мире эти частицы стабильны при высоких энергиях. К примеру, в недрах звёзд. Или когда космическое вещество взаимодействует с излучениями.
Нельзя ни на секунду забывать, что эта необычная для нашей области пространства субстанция по поведению и характеристикам – также до конца непонятная пока, как и её сестра, имеющая платье бублика электрона. Эта частица тем более непонятна, так как стабильную её изучать трудно.
Протон
Мы знаем, что материальное вещество состоит из малых тел – атомов. В центре атома есть ядро. Это и есть протон. Образование намного массивнее электрона.
Самое удивительное, что 3 кварка, которые там находятся, никак неделимые. Были эксперименты, когда отсекали у протона часть тела. Отсечённое уходило в виде небольшого выплеска энергии, а протон оставался целёхоньким, вновь с тремя кварками.
Следует знать, что в мире элементарных взаимодействий такие фокусы встречаются часто. Чем глубже в материю, тем чудеснее и волшебнее проявляются эти реальные события на уровне микроскопических масштабов.
Нейтрон
Микроскопическое образование на теле протона. Образно это выглядит таким образом. Трёхмерное тяжёлое облако протона облеплено со всех сторон тяжёлыми облаками нейтронов.
Всё вместе – и нейтроны, облепившие протон, и само центральное тело – рассматривается как она система, которую назвали одним именем – нуклон.
Прослеживается взаимосвязь состояния нуклона от количества бубликов, электронов. То есть это почти живая система, со своим перераспределением энергий, которая, как известно, никуда не исчезает. И нейтрон в этой системе обладает одной из ключевых распределительных функций.
Фотон
Это промежуточное состояние вещества, парадоксальное по своей сути. Он существует только в движении, с определённой скоростью. Частица фотон – это частицы света.
Причём частицей эту уникальную сущность природы можно назвать только условно. Это и частица и волна. Парадоксальность заключается ещё в том, что фотоны могут мгновенно останавливаться, и опять двигаться с прежней огромной скоростью.
Большинство людей даже не задумываются о необычности явления обычного отражения света в зеркале. Свет движется к зеркалу с определённой большой скоростью. На поверхности зеркала останавливается.
Тут же под углом уходит от зеркала в другом направлении, с большой скоростью. А зеркало такое же холодное, как и было. Парадоксально, но это факт. А ведь фотон – материальная частица.
Кварк
Очень удивительные элементарные частицы, которые могут существовать только в связанном состоянии с другими кварками. Тут может быть любая комбинация из разных составляющих. Без этой составляющей физического мира не было бы квантовой физики.
Так как именно кварки, их необычайное поведение и связанные с этим выраженные явно феноменальные законы – стали катализаторами знаний о квантовой физике. При проведении экспериментов и вычислений.
Разные сочетания кварков порождают множество других элементарных частиц. Так пара частиц образуют мезон, тройка – барион. Причём можно подобрать разные сочетания.
Тут ещё непочатый край для экспериментов и исследований. У большинства учёных сложилось впечатление, что исследование в этом направление будет вестись долго. А результатом станут новые научные и технологические открытия.
Глюон
Эти частицы можно понять как связующую субстанцию, которая связывает кварки. Это своеобразный клей для кварков. Отдельно они не могут существовать, а при помощи глюонов, их общего поля – собираются в комбинации элементарных частиц, подчиняющихся каким-то программным установкам физического общего закона взаимодействий, который над ними. Который пронизывает и управляет ими.
Уже классифицированы сотни, если не тысячи новых состояний элементарных частиц, которые образуются из кварков. И всё это благодаря существованию глюонов, их способности соединять, склеивать.
Мюоны
Это мельчайшие составляющие космических лучей определённой насыщенности, способные проходить через атмосферу и даже проникать через горные породы. Удивительно, но эти странные частицы, их свойства, были лучше изучены в результате заинтересованности одним физиком египетскими пирамидами в середине 60 годов прошлого века.
Изучая пирамиды, этот любознательный физик предположил, что мюоны лучше проходят через воздух, чем через горные породы. Он не успел воспользоваться своей догадкой.
Последующие события в том регионе помешали проверить догадки. Но в начале 21 века после исследований и ряда научных работ мюоны были изучены лучше, даже создали мюонный томограф, который был поставлен на службу в деле нахождения ядерной контрабанды.
Нейтрино
Почти неуловимая частица. По своему похожа на фотон и на электрон. Но не имеет заряда. И почти не имеет массы. Скорость движения зависит от массы, которая очень мала.
Нейтрино чуть медленнее света. Зато проникает везде. Сначала её вычислили математически. Потом в процессе экспериментов всё же были зафиксированы реальные данные обнаружения этой удивительной, неуловимой частицы.
Так как это микроскопическое чудо природы не имеет заряда, то прошивает нашу планету во всех направлениях насквозь, не замечая даже этого. Чтобы экспериментально её уловить, стали строить подземные устройства с хитроумной начинкой. И вот уже несколько десятков лет следящая аппаратура у этих устройств иногда фиксирует след пролёта этой почти неуловимой частицы.
Бозон Хиггса
Поиском этой частицы начали заниматься совсем недавно. И вроде уже нашли. Хотя точных сведений пока нет. Почему такой ажиотаж вокруг этой частицы? Дело в том, что современная физика считает, что существование так называемой частицы бога, бозона Хиггса подтвердит верность стандартной модели, которая бытует в современной физике.
По всем расчётам стандартной модели выходит, что должно существовать одно общее поле. Его назвали полем Хиггса. Оно создаёт частицы бозоны Хиггса. А те, в свою очередь, помогают ломать симметрию. У частиц появляется масса. Это объясняет теорию большого взрыва и появление материи после этого. Так это или нет, покажут дальнейшие исследования.
Источник