Меню

Масса белых карликов существенно превышает массу солнца верно или нет

Масса белых карликов существенно превышает массу солнца верно или нет

На рисунке представлена диаграмма Герцшпрунга — Рассела.

Выберите два утверждения о звездах, которые соответствуют диаграмме.

1) Плотность белых карликов существенно меньше средней плотности гигантов.

2) Звезда Канопус, поскольку её радиус почти в 65 раз превышает радиус Солнца, может быть сверхгигантом.

3) Температура звёзд спектрального класса G в 3 раза выше температуры звёзд спектрального класса А.

4) Солнце относится к спектральному классу В.

5) Звезда Альтаир имеет температуру поверхности 8000 К и относится к звёздам спектрального класса А.

1) Как видно из диаграммы белые карлики имеют диаметр порядка 0,01 солнечного, а гиганты — 10 солнечных. Т. е. диаметр белых карликов в 1000 раз меньше, чем у гигантов. Чтобы иметь среднюю плотность меньше, чем у гигантов, массы белых карликов должны быть в миллиард (1000 3 ) раз меньше. Но это не так. Массы белых карликов сравнимы с массой Солнца, а массы гигантов только в десятки раз превышают солнечные. Таким образом, наоборот, плотность белых карликов существенно больше средней плотности гигантов. Утверждение 1 неверно.

2) Большой радиус Канопуса позволяет отнести его к сверхгигантам, для однозначного ответа необходима дополнительная информация. Утверждение 2 верно.

3) Температура звёзд спектрального класса G меньше температуры звёзд спектрального класса А. Утверждение 3 неверно.

4) Солнце с температурой поверхности 6000 К относится к спектральному классу G, а не В. Утверждение 4 неверно.

5) К классу А отностятся звезды, имеющие температуру поверхности от 7400 до 10 000 К. Звезда Альтаир, имея температуру поверхности 8000 К, относится к звёздам спектрального класса А. Утверждение 5 верно.

Источник

Что такое предел Чандрасекара или как может взорваться белый карлик.

Белые карлик — эти остатки звезд, обладают достаточно странным и необычным свойством, чем меньше масса карлика, тем больше его размер и наоборот, чем больше масса, тем меньше размер.

Основная причина этого феномена в том, что белые карлики состоят из вырожденного вещества ( в частности вырожденного электронного газа). Вырожденное вещество обладает свойствами обратными обычному веществу.

Отсюда возникает два вопроса.

Первый. Будет ли белый карлик постепенно и неограниченно увеличиваться, если постепенно уменьшать его массу? Ответ — нет.

При уменьшении массы, начнет уменьшаться и плотность, и как только она опустится ниже определенного порога, то вещество перестанет быть вырожденным и вновь станет обычным. Этот предел лежит в районе 0,001 массы Солнца, то есть в районе массы Юпитера. Такие объекты ведут себя как обычное вещество и называются планетами.

Второй. Что будет, если неограниченно увеличивать массу белого карлика? Масса белого карлика не может расти безгранично. Слишком тяжелый белый карлик ожидает красивая смерть во вспышке или сверхновой (чаще) или нейтронной звезды (реже).

Второй сценарий развивается следующим образом. По мере возрастания массы плотность белого карлика все нарастает и нарастает, растет и гравитация. В противовес гравитации начинают быстрее и быстрее двигаться частицы внутри звезды. Но у частиц есть предел скорости — это скорость света. И вот, когда частицы достигают предела своей скорости, гравитацию сдерживать уже нечем — начинается коллапс звезды, а затем и ее вспышка (вспышка сверхновой или нейтронной).

Чтобы избежать такой участи белый карлик должен своей массой не превышать 1,4 массы Солнца.

Вот этот масштаб массы и называется пределом (массой, индексом) Чандрасекара, в честь американского астрофизика индийского происхождения Субраманьяна Чандрасекара.

Его он вычислил в 18 лет во время океанского переезда в Тринити-колледж, в Кембридже, получив грант от индийского правительства. А потом еще и был высмеян за этот предел Артуром Эддингтоном на одном из заседаний Королевского общества. А потом получил Нобелевскую премию.

Источник

Белый карлик – загадка Вселенной или естественный ход вещей

Во Вселенной, помимо молодых звезд видимого спектра, существует огромное количество звезд, горящих едва заметным тусклым светом. Это белые карлики – звезды, прошедшие практически полный цикл эволюции, звездная карьера которых катится к закату.

Читайте также:  Германская империя борьба за место под солнцем причины быстрого экономического развития

Что представляют собой белые карлики?

Неопределенность оценки звездного населения нашей галактики объясняется техническими трудностями обнаружения объектов. Заглянуть вглубь космоса мешают огромные массивы звездного газа и космической пыли, туманности и скопления, населяющие рукава галактики Млечный путь.

В те годы, когда техника не позволяла детально изучать космическое пространство, белые карлики считались редким явлением. Однако сегодня человечество вооружено до зубов мощнейшими телескопами, которые могут заглянуть в глубины космоса под иным спектром. В среднем, пространственная плотность белых карликов составляет 100 звезд на сферу космического пространства диаметром 60 световых лет. В нашей галактике существует до полутора тысяч подобных объектов.

Галактика Млечный путь, белые карлики

Полторы тысячи — это довольно много, учитывая возраст Вселенной. Т.е. за 13-14 млрд. лет в пределах галактики Млечный путь внушительное количество звезд уже находится в преклонном возрасте, ожидая своей дальнейшей участи. Если брать в расчет сотни, десятки сотен других галактик, то это число соответственно многократно увеличится. Учитывая небольшие размеры, которые свойственны таким звездам, то в действительности их может оказаться значительно больше.

Белый карлик -это звезда по размерам равная планете Земля, однако масса такой звездочки в сто тысяч раз больше массы нашей голубой планеты. Как правило, масса белого карлика варьируется в диапазоне 0,6-1,44 солнечных масс. Для этой категории звезд характерным является зависимость «масса-радиус». Чем больше масса стареющей звезды, тем меньше ее размеры. Из школьного курса астрономии известно, что белые карлики являются обнажившимся ядром звезды, которая сбросила верхний слой звездной материи. По факту такое ядро имеет небольшие размеры, является горячим. Низкая светимость есть доказательство отсутствия у этого небесного тела термоядерных реакций. Да и откуда им взяться! За миллиарды лет существования звезды, ее запасы водорода – основного звездного топлива — исчерпались. Основными компонентами белого карлика теперь стали не водород и гелий, а углерод и кислород. Плотность такого обнажившегося ядра колоссальна и составляет 10⁶-10⁷ г/см³.

Такая высокая плотность обусловлена чудовищным давлением. Остаточная материя пребывает в состоянии гравитационного баланса, который создается сочетанием массы и размеров объекта.

Остывающий белый карлик

Отсутствие ядерных реакций приводит к тому, что звезда начинает медленно остывать. Интенсивность излучения падает сравнительно медленно, на 1-2% за сотни лет. Процесс остывания сильно растянут по времени и может продлиться триллионы лет, прежде чем звезда исчезнет в космическом пространстве как материальное тело. Температура звезды, только что перешедшей в категорию пенсионеров, на поверхности довольно высокая — 100-200 тыс. Кельвина. Для старых белых карликов температура на поверхности уже достаточно низкая — 5000К.

Солнце также ожидает подобная судьба. Через 5-6 млрд. лет наше главное светило неизбежно истратит весь запас водорода и гелия, уйдя на пенсию в статусе белого карлика.

История открытия белых карликов

Современная наука о звездах обрела свои реальные очертания только в середине XX века. Уже в начале 30-х годов ученые-астрофизики могли свободно рассчитать параметры любой наблюдаемой звезды: ее светимость, размеры и температуру. На этом фоне явно выделялся один объект, который портил всю стройную картину — звезда 40 Эридана В, обнаруженная еще в далеком 1783 году известным астрономом Уильямом Гершелем. В отличие от привычных звезд для этого светила было характерно явное несоответствие: небольшие размеры, низкая светимость и высокая температура. Подобные факты шли в разрез со всеми существующими законами физики. Со временем удалось обнаружить еще несколько подобных объектов, одним из которых стал Сириус В. Да, именно Сириус В – скромная маленькая звездочка, пребывающая в тени своей ослепительной соседки Сириуса.

Читайте также:  Символы солнца древние цивилизации

Поводом к открытию стало наблюдением за поведением Сириуса, которое проводил немецкий астроном Вильгельм Бессель. Ему удалось обнаружить неестественное для звезды движение. Сириус двигался в космическом пространстве по синусоиде. Долгие годы ученый ломал голову над этой загадкой, пока не пришел к выводу, что рядом с Сириусом расположена другая звезда, небольшая и едва заметна. Именно ее гравитационные силы воздействуют на поведение Сириуса. Позже, в 1862 году А. Кларку удалось с помощью мощного оптического телескопа обнаружить невзрачного соседа Сириуса. Таким образом, выяснилось, что предсказания и расчеты Бесселя оказались правильными.

Наблюдение за Сириусом

Уже в XX веке удалось выяснить, что «двойник Сириуса» имеет температуру 25000К выше, чем у самой яркой звезды. Небольшие размеры столь горячего тела наталкивали ученых на мысль, что причина такого состояния — высокая плотность объекта. Это открытие в корне перевернуло всю устоявшуюся теорию о происхождении звезд. Появился новый и важный элемент в эволюции звездного населения галактик Вселенной. Наука получила в свои руки доказательства природы старения звезд.

Физика процесса

По сути, белые карлики являются огарками звезд, утративших свою жизненную силу и энергию. В отличие от обычных желтых карликов, где звездная материя пребывает в равновесии, белые карлики лишены такого устойчивого баланса. Для того, чтобы силы внутренней гравитации могли противостоять внешнему воздействию, нужно иметь мощные источники внутренней энергии. В противном случае, теряя часть своей материи, звезда быстро бы разрушилась под воздействием гравитации. Внутренним источником энергии является реакция термоядерного синтеза, в ходе которой водород превращается в гелий. Запасы водорода определяются массой звезды, соответственно от этого зависит и длительность термоядерных реакций. Как только водородное топливо выгорает, звездная материя утрачивает равновесие. Под действием собственной силы тяжести звезда начинает стремительно сжиматься, превращаясь из огромного красного гиганта в маленький белый карлик.

Процесс охлаждения белого карлика

С точки зрения квантовой физики этот процесс можно объяснить следующим образом. Атомы начинают сжиматься, теряя внутренние энергетические связи. Увеличившаяся плотность объединяет электроны в новую субстанцию — вырожденный электронный газ. В таком состоянии электроны плотно взаимодействуют друг с другом, противодействуя силам гравитационного сжатия. Образуется так называемое голое ядро, которое не имеет ни внешней оболочки, ни короны.

На этом этапе эволюции звезд решающая роль принадлежит квантовым свойствам элементарных частиц. Этому способствует такое явление, как вырожденное давление, возникающее в результате сильнейшего сжатия материи в недрах небесного тела. Процесс гравитационного сжатия у белого карлика не возникает на пустом месте. Это происходит постепенно до тех пор, пока расстояние между ядрами атомов не уменьшится до размеров радиуса электронов. Дальнейшее сжатие невозможно, так как оболочка электронов уже не подвержена физическим изменениям. В таком состоянии электроны двигаются хаотично, теряя связь с ядрами. Такая квантовая механика характерна для внутреннего строения металлов, где кинетическая энергия перерастает в тепловую и распределяется от внутренних областей к поверхности, поэтому можно утверждать, что белый карлик напоминает раскаленный кусок металла.

Электронный вырожденный газ

Для электронного газа характерна одна особенность. В процессе сжатия скорость электронов постоянно растет. Самые быстрые электроны стремятся занять любое освободившиеся место, тем самым уменьшая объем газовой субстанции. По мере приближения к поверхности ядра вырожденное давление ослабевает, что приводит к снижению температуры стареющей звезды. Здесь процесс ионизации атомов еще только начинается, поэтому звездная материя пребывает в обычном газообразном состоянии.

Строение белых карликов

Природа процессов, протекающих в недрах стареющей звезды, отражается на ее строении. Первым отличительным признаком белого карлика является его атмосфера. Анализируя данные оптических наблюдений, напрашивается вывод: толщина атмосферного слоя у такой звезды составляет всего несколько сотен метров. Судя по составу спектра, каждый из таких объектов имеет свой химический состав. В связи с этим, белые карлики делятся на два типа:

Читайте также:  Планета солнце влияние за что отвечает

Для первого типа основными компонентами являются ограниченное количество водорода (не более 0,05%), гелий, углерод, кальций, железо и титан (звездный металл). Горячие белые карлики имеют температуру 50000К. Для второго типа белых карликов основным компонентом является гелий. Атомов водорода в таких звездах один на миллион. Холодные карлики разогреты в десятки раз меньше, всего до отметки 5000К. Первые «водородные» белые карлики относятся к спектральному классу DA, вторые — «гелиевые» — относятся к белым карликам типа DB.

Строение белого карлика

Атмосфера белого карлика покрывает область оставшейся невырожденной материи, в которой присутствует ограниченное количество свободных электронов. Этот слой имеет толщину в 150-170 км, занимая 1% радиуса стареющей звезды. Толщина слоя невырожденной материи может меняться по мере старения объекта, однако размер звезды остается тем же. В таком состоянии белый карлик может находиться до самой своей кончины. Окончательные размеры белых карликов определятся его массой. Как и в случае с минимальной предельной массой, существует критический порог размеров подобных объектов.

Ученые допускают минимально возможный радиус для белых карликов в 10 тыс. км.

Минимальный размер белого карлика

Под слоем невырожденной материи начинается царство релятивистского вырожденного электронного газа, который представляет собой изотермически выделенную субстанцию. Температура здесь постоянная по всем направлениям и составляет миллионы градусов Кельвина. Тепловая энергия передается от внутренних областей звезды к поверхности, излучаясь в окружающее космическое пространство. Подобные процессы не позволяют телу светиться ярким светом. Основной поток тепловой энергии представлен рентгеновским излучением.

Судьба белого карлика

Каждая звезда, подобная нашему Солнцу, закончит свои дни в статусе белого карлика. Этот этап в жизни звезды будет блеклым, невзрачным и в то же время достаточно долгим. В конечном итоге белый карлик умрет. Сегодня, по мнению ученых, возраст Вселенной не позволяет говорить о том, что в ее глубинах уже имеются черные, мертвые карлики. Существует теория, что количество белых карликов увеличивается с постоянной величиной. В силу малой изученности космоса, мы не можем говорить о точном количестве подобных объектов. Допускается версия, что белых карликов во Вселенной значительно больше. Интересно другое. Какие звезды становятся белыми карликами, а какие нет?

В научной среде нет единого мнения о природе белых карликов. Считается, что половина всех существующих подобных объектов в космическом пространстве возникает в процессе эволюции обычных звезд главной последовательности, тогда как другая половина возникает в недрах планетарных туманностей. Точных данных о природе возникновения белых карликов на сегодняшний момент нет. Основные версии и теории базируются на моделях, создаваемых путем логических умозаключений.

Белый карлик планетарная туманность

Несмотря на всю сложность существующего вопроса, точно известно одно. Все звезды, массивные, сверхмассивные и обычные в процессе своего существования неизбежно растрачивают часть своей звездной материи.

Для нашего Солнца тоже уготована судьба стать белым карликом. Сначала медленная старость, которая завершиться тихой смертью звезды в просторах Вселенной. Светила, масса которых вдвое превышает солнечную массу, идут по другому пути эволюции. Утратив устойчивость, такая звезда на финальной стадии может взорваться, озарив космос вспышкой сверхновой, и превратиться в небольшой нейтронный шарик.

Эволюция звезд – это процесс, который протекает вне зависимости от нашего существования. Рождение человеческой цивилизации, гибель ее будут протекать в те периоды, когда наше Солнце еще будет далеко от своего финала. Солнце может погубить нас еще в статусе красного гиганта, испепелив Землю до состояния уголька. До того момента, когда в пределах видимости наших оптических приборов появится новый белый карлик, пройдет бесконечно много времени.

Источник

Adblock
detector