Шкала масштабов Вселенной
Используйте онлайн интерактивную шкалу масштабов Вселенной: реальные размеры Вселенной, сравнение объектов космоса, планеты, звезды, скопления, галактики.
Мы все думаем об измерениях в общих понятиях, таких как другая реальность, или наше восприятие окружающей среды вокруг нас. Однако это лишь часть того, чем являются измерения на самом деле. И, прежде всего, существующее понимание измерений масштабов Вселенной – это лучшее из описанного в физике.
Физики предполагают, что измерения – это просто разные грани восприятия масштабов Вселенной. К примеру, первые четыре измерения включают длину, ширину, высоту и время. Однако, согласно квантовой физике, существуют другие измерения, описывающие природу вселенной и, возможно, всех вселенных. Многие ученые верят, что в настоящее время существует около 10 измерений.
Интерактивная шкала масштабов Вселенной
Измерение масштабов Вселенной
Первое измерение, как уже упоминалось, это длина. Хорошим примером одномерного объекта является прямая линия. Эта линия имеет только измерение длины. Вторым измерением является ширина. Это измерение включает и длину, хорошим примером двумерного объекта будет до невозможности тонкая плоскость. Вещи в двух измерениях можно рассматривать только в поперечном сечении.
Третье измерение включает высоту, и это измерение для нас наиболее знакомо. В комбинации с длиной и шириной, это наиболее хорошо видимая часть вселенной в терминах измерений. Лучшая физическая форма для описания этого измерения – куб. Третье измерение существует, когда пересекаются длина, ширина и высота.
Иерархическая шкала размеров Вселенной
Теперь все становится немного сложнее, потому что оставшиеся 7 измерений связаны с нематериальными понятиями, которые мы не можем наблюдать непосредственно, но знаем, что они существуют. Четвертое измерение – время. Это различие между прошлым, настоящим и будущим. Таким образом, лучшим описанием четвертого измерения будет хронология.
Другие измерения имеют дело с вероятностями. Пятое и шестое измерения связаны с будущим. Согласно квантовой физике, может быть любое количество вероятных вариантов будущего, но результат существует только один, и причина этого – выбор. Пятое и шестое измерения связаны с бифуркацией (изменением, разветвлением) каждой из этих вероятностей. В сущности, если бы вы могли управлять пятым и шестым измерением, вы могли бы вернуться во времени назад или побывать в различных вариантах будущего.
Измерения с 7 по 10 связаны с Вселенной и ее масштабом. Они основываются на том, что существует несколько вселенных, и каждая имеет собственные последовательности измерений реальности и возможных результатов. Десятое, и последнее, измерение, на самом деле является одним из всех возможных результатов всех вселенных.
Источник
Величайшая загадка Вселенной: из чего состоит пространство-время?
«Из чего сделано пространство-время?», задается вопросом физик Арон Уолл из Стэнфордского института теоретической физики. В течение последних нет физики по-разному пытаются осмыслить загадку пространства-времени, рассматривая его не просто как пустой фон, на котором разворачивается история Вселенной, а скорее как поток квантовой информации, перетекающей из одной точки в другую. Уолл и его коллеги все больше убеждаются, что такое представление пространства-времени может быть ключом к разработке теории, которая сможет объяснить гравитацию с использованием принципов квантовой механики. Об этом физики мечтают еще со времен Альберта Эйнштейна.
Пространство и время — это две, наверное, самые неуловимые вещи в мире.
Петр Зенчиковский из Института ядерной физики Польской академии наук задается таким же вопросом, что и Уолл. Является ли пространство-время абсолютной, неизменной, вечно и всегда присутствующей ареной, на которой разворачиваются события? Или, возможно, это динамическое создание, возникающее как бы на определенном масштабе расстояний, времени или энергии? Упоминание абсолюта не приветствуется в современной физике. Считается, что пространство-время эмерджентно, то есть возникает откуда-то. Непонятно только, откуда.
Что такое пространство-время?
Большинство физиков считает, что структура пространства-времени формируется непонятным образом в пределах масштабов Планка, то есть на масштабах, близких к одной триллионной от триллионной доли метра. Однако есть некоторые убеждения, которые ставят под вопрос однозначность такого толкования. Существует немало аргументов в пользу того факта, что возникновение пространства-времени может происходить в результате процессов, которые намного ближе к нашей реальности: на уровне кварков и их конгломератов.
«Математика — это одно, отношение с реальным миром — другое», говорит Зенчиковский. «Например, величина массы Планка кажется подозрительной. Можно было бы ожидать, что у нее будет значение, более характерное для мира квантов. Между тем, оно соответствует примерно 1/10 массы блохи, которая определенно является классическим объектом».
Большинство физиков склонны предполагать, что пространство-время создается на планковских масштабах, на расстояниях, близких к одной триллионной триллионной доли метра (
10 -35 м). В своей статье в Foundations of Science Зенчиковский систематизирует наблюдения разных авторов касательно формирования пространства-времени и утверждает, что гипотеза о его формировании в масштабах кварков и адронов (или кварковых агрегатов) вполне разумна по ряду причин.
Вопросы о природе пространства и времени озадачивали человечества с древних времен. Может ли время быть отдельным от материи, создающим «контейнер» для движений и событий, которые происходят при участии частиц, как это предполагал Демокрит в 5 веке до н.э.? Или, может быть, все это атрибуты материи и не могут без нее существовать, как предположил Аристотель столетием позже?
Несмотря на то, что прошла уже тысяча лет с тех пор, эти вопросы до сих пор не решены. Более того, оба подхода — несмотря на их очевидное различие — глубоко укоренились в столпах современной физики. В квантовой механике события происходят на жесткой арене с равномерно текущим временем.
Между тем, в общей теории относительности вещество деформирует упругое пространство-время (растягивает и скручивает его), а пространство-время сообщает частицам, как двигаться. Другими словами, в одной из теорий актеры выходят на уже подготовленную сцену, чтобы играть свои роли, а в другой они создают сцену во время представления, что, в свою очередь, влияет и на их поведение.
В 1899 году немецкий физик Макс Планк заметил, что при определенных комбинациях некоторых констант в природе можно получить самые фундаментальные единицы измерения. Всего три постоянных — скорость света c, гравитационная постоянная G и постоянная Планка h — и мы получаем единицы расстояния, времени и массы, равные (соответственно) 1,62 х 10 -35 м, 5,39 х 10 -44 с и 2,18 х 10 -5 г. Исходя из современных убеждений, пространство-время должно рождаться на планковской длине. Но нет никаких существенных аргументов в пользу рациональности этой гипотезы.
Как наши самые сложные эксперименты, так и теоретические описания достигают масштаба кварков на уровне 10 -18 м. Откуда же нам знать, что на пути к планковской длине — на протяжении дюжины последовательных и еще меньших порядков величины — пространство-время обретает свою структуру? Мы даже не знаем, рационально ли понятие пространства-времени на уровне адронов! Разделение не может производиться бесконечно, потому что на определенном этапе вопрос следующей меньшей части просто перестает иметь смысл. Прекрасным примером будет температура. Эта концепция прекрасно служит на макромасштабах, но при последовательных делениях материи мы достигаем масштаба отдельных частиц и понятие температуры теряет смысл.
«В настоящее время мы сперва стремимся построить квантованное дискретное пространство-время и затем «населить» его дискретной материей. Но если пространство-время будет продуктом кварков и адронов, зависимость будет обратной: дискретное свойство материи должно усиливать дискретность пространства-времени», говорит Зенчиковский и добавляет: «Планк опирался на математику. Он хотел создать единицы из мельчайших возможных постоянных. Но математика это одно, а отношение с реальным миром другое. Значение планковской массы кажется подозрительным. Можно было бы ожидать, что у нее будет более подходящая характеристика для мира квантов. Но она соответствует примерно 1/10 массы блохи, которая определенно является классическим объектом».
Смотришь в космос и не понимаешь, где у него конец
Поскольку мы хотим описать физический мир, мы должны опираться на физические, а не на математические аргументы. И поэтому, когда мы используем уравнения Эйнштейна, мы описывает Вселенную в больших масштабах и возникает необходимость вводить дополнительную гравитационную постоянную, известную как космологическая постоянная «лямбда». Если, при построении фундаментальных единиц, расширить наш изначальный набор трех постоянных лямбдой, в случае с массой мы получим не одно, а три фундаментальных значений: 1,39 х 10 -65 г, 2,14 x 10 56 г и 0,35 х 10 -24 г. Первую можно интерпретировать как квант массы, вторую — уровень массы наблюдаемой Вселенной, а третья напоминает массу адронов (например, масса нейтрона равна 1,67 х 10 -24 . Точно так же, принимая во внимание лямбду, появится единица измерения 6,37 х 10 -15 м, очень близкая к размеру адронов.
«Игры с постоянными могут быть рискованными, потому что многое зависит от того, какие константы мы выбираем. К примеру, если бы пространство-время действительно являлось продуктом кварков и адронов, то его свойства, включая скорость света, также должны быть эмерджентными. А это означало бы, что скорость света не может быть среди основных констант», отмечает Зенчиковский.
Другим фактором в пользу образования пространства-времени в масштабе кварков и адронов являются свойства самих элементарных частиц. Стандартная модель, например, не объясняет, почему существует три поколения частиц, откуда берутся их массы или почему существуют так называемые внутренние квантовые числа, которые включают изоспин, гиперзаряд и цвет. В картине, представленной профессором Зенчиковским, эти значения могут быть связаны с определенным шестимерным пространством, созданным положением частиц и их импульсами. Построенное таким образом пространство одинаково уважает положение частиц (материя) и их движения (процессы). Выясняется, что свойства масс или внутренние квантовые числа могут быть следствием алгебраических свойств шестимерного пространства. Более того, эти свойства также объясняют невозможность наблюдать свободные кварки.
«Возникновение пространства-времени может быть связано с изменениями в организации материи, происходящей в масштабе кварков и адронов, в более первичном шестимерном фазовом пространстве. Однако не совсем понятно, что дальше делать с этой картиной. Каждый последующий шаг потребует выхода за пределы того, что мы знаем. И мы даже не знаем правил игры, по которым Природа играет с нами, нам все равно приходится их угадывать. Однако представляется разумным, что все конструкции начинаются с материи, потому что она является физически и экспериментально доступной. В этом подходе пространство-время будет лишь нашей идеализацией отношений между элементами материи», суммирует профессор Зенчиковский.
Согласитесь с ним? Расскажите в нашем чате в Телеграме.
Источник
Тайны мира и человека
Время во вселенной
Во второй главе «Чжуань Фалунь», «Вопрос о небесном оке», автора Ли Хунчжи говорится: «По сравнению с живыми существами на других планетах нашей Вселенной, где существуют высшие умы, научно-технический уровень человечества остается довольно низким. Мы даже не можем прорваться в другое пространство, существующее в данный момент и в данном месте. «Летающие тарелки», прибывшие с других планет, летают в других пространствах, где господствует совсем другое понятие о времени-пространстве». Кроме того, «… Всем известно, что частицей материи является молекула, атом, протон… и в самом конце, если исследовать дальше в этом направлении и на каждом уровне видеть плоскость данного уровня, а не какую-то его точку, то ты увидел бы плоскость уровня молекулы, плоскость уровня атома, плоскость уровня протона, плоскость уровня ядра атома и увидел бы формы существования материи в разных пространствах. Любые предметы, в том числе и тело человека, одновременно существуют и сообщаются с разными уровнями пространств Вселенной.
Наша современная физика, занимаясь исследованием частиц материи, изучает лишь одну частицу, ее разделяют и раскалывают, после расщепления атомного ядра изучают его состав. Если бы был такой прибор, при помощи которого можно увидеть целостное воплощение всего атомного или молекулярного состава на этом уровне, если бы мы могли увидеть эту картину, то уже прорвали бы это пространство, увидели бы подлинную картину, существующую в других пространствах. Тело человека имеет связь соотношения с внешними пространствами. Таковы формы его существования». Исследование учеными времени-пространства может быть разделено на три фазы. В первой фазе, Исаак Ньютон полагал, что Вселенная была механической, и расценивал её как точную машину, которая работала, следуя неизменному набору правил, основанных на классической физике.
Например, Земля вращается вокруг Солнца, а галактики подобны механизму в огромных часах. Эта механическая концепция времени-пространства является системой с абсолютным временем и абсолютным пространством. Она полностью изолирует время и пространство. Вторая фаза была основана на «Теории относительности» Эйнштейна. Была установлена концепция относительного времени-пространства, объединяющая время и пространство. В любой инерционной системе время измеряется часами, имеющими туже самую структуру, что и система, и относительно связанными с системой. Обобщенная Теория относительности отменила концепцию инерционной системы и связала материю, движение и время-пространство вместе через понятие гнущегося пространства, отказывающегося от изоляции времени и пространства.
Однако, общая «Теория относительности» Эйнштейна может только описать неподвижное и равномерно распределённое изолированное время-пространство. Она не установила физическое понятие динамического разнообразия времени-пространства более высоких измерений, не рассматривала она также и развитие структур времени-пространства. Кроме того, согласно недавно полученным данным, прецессия ртути и наличие источников вспышек рентгеновского излучения бросили вызов общей Теории относительности Эйнштейна. Ко времени третьей фазы, современная наука уже узнала, что время-пространство мира, в котором мы живем, очень усложнено и не является только тем, что мы, люди, можем видеть нашими глазами. Основываясь на этом, люди развили современную теорию времени-пространств.
2.1 Современная теория времени-пространства и понятия времени-пространства в квантовой физике
Главный исходный пункт современной теории времени-пространства состоит в том, что Вселенная составлена из всех видов структур времени-пространства с различной размерностью. Сущность многообразия времён-пространств более высоких измерений — составной поток энергии. Таким образом, сущность пространства — это поток энергии. Например, «Теория суперструн» базируется на том, что реальное время-пространство многомерно, и состоит, возможно, из 10 или даже 26 измерений.
Для примера, возьмём 10 пространств. Квантовая механика заявляет, что все частицы имеют природу волны и длина волны, l, вычисляется формулой h/p, где p — импульс силы, и h — постоянная Планка. Если длина волны частиц будет намного больше, чем размер пространства, то измерение будет сжато. Согласно теории Калуцы-Клейна (Kaluza-Klein), чтобы получить правильную гравитационную константу в сжатом 4-х мерном времени-пространстве, размер других шести измерений должен быть в пределах шкалы Планка lp (lp = h / (mp*c), где знаменатель представляет импульс). Таким образом, можно заметить, что для того, чтобы обнаружить другие шесть измерений, импульс частицы должен быть больше чем (mp*c), что делает l Запись опубликована 12.02.2016 автором konsul777999 в рубрике Тайны вселенной с метками гипотезы, загадки, наука, паранормальное, тайны.
Источник