Меню

Метеорит больше чем луна

Что будет с Землей, если крупный астероид упадет на Луну?

Луна важна для человечества не только в качестве потенциального места для колонии. Этот спутник влияет на Землю, создавая приливы и отливы, а также 24-часовой цикл. Поэтому нам важно, чтобы Луна оставалась на своей позиции в целости и сохранности. Но что произойдет, если в спутник врежется астероид? Сможет ли он сместить его с теперешней позиции?

Давайте разберемся с этими вопросами. По сути, Солнечная система заполнена астероидами, большая часть которых сконцентрирована в поясе между Юпитером и Марсом. Однако и возле Земли можно найти множество таких объектов.

Приближенные к нашей планете объекты называют околоземными астероидами. Однако если они подходят слишком близко или размеры угрожают жизни, то их переводят в категорию потенциально опасных астероидов.

Распределение астероидов в Солнечной системе

Важно понимать, что астероиды все время падают на Луну и Землю. Так что в этом нет ничего удивительного. Наша планета наделена плотным атмосферным слоем, который способен сжигать довольно крупные объекты, и пропускает лишь действительно серьезную угрозу (и то, многие астероиды взрываются в воздухе или долетают до поверхности в уменьшенном состоянии).

Что будет, если астероид упадет на Луну? Ну, они постоянно туда падают. Отличие лишь в том, что на спутнике нет атмосферы, поэтому исключается сопротивление, и астероиды при падении формируют кратеры.

Диаграмма показывает, как данные WISE привели к пересмотру количества околоземных астероидов в рамках проекта NEOWISE. Программе удалось найти более 500 объектов с шириной более 100 м (средние и крупные астероиды). Астероиды с меньшим размером не изучали, а околоземные проанализируют позже. Размеры астероидов не отображены в масштабе на карте. Каждое изображение астероида оказывает около 100 реальных объектов. Найденные астероиды отображены коричневым. Весь ряд астероидов через синие контуры показывает, сколько объектов существовало до съемки NEOWISE. Зеленым отмечена новая оценка количества. Можно заметить, что для крупных объектов разница небольшая, а количество средних сократилось.

Вы могли не знать, но, например, в 2006 году произошел удар, ставший причиной появления 14-метрового кратера с глубиной в 3 м. Если бы такая скала упала на Землю, то она б сгорела в атмосфере.

Вывод напрашивается простой: размер астероидов имеет значение. Например, если 400-метровый астероид 2005 YU55 упадет на Луну, то создаст кратер с шириной в 4 км. Естественно, земляне останутся целыми.

Стоит понимать, что Луна – крупный объект. Может ли астероид сдвинуть ее с места? В теории это возможно, но понадобится действительно большой астероид. Представим, что карликовая планета Церера сошла с привычной орбиты и врезалась в Луну. Ожидаются разрушения, но Луна не сдвинется в орбиты и не сблизится с Землей.

17 июля 2018 года древний космический осколок врезался в Луну, создав яркую энергетическую вспышку. Ровно через 24 часа другая космическая скала повторила событие вспышки. Последний анализ указывает на то, что это два взаимодействующих метеороида (фрагменты астероидов и комет), которые по размеру достигали параметра грецкого ореха. Скорее всего, произошли от метеорного потока Альфа Каприкорнид, когда Земля и Луна прошли сквозь хвост кометы 169P/NEAT.

Однако если появится астероид, который по размеру и массе соответствует лунным, то можно ожидать, что Луна сдвинется с орбиты. Хотя, скорее всего, наш спутник от удара просто разрушится (это ведь не бильярдные шары).

И что будет с Землей, если Луна вдруг сойдет с орбиты и пойдет на нас? Все эти интересные детали и теории можно прочитать в нашей статье «Что будет, если Луна столкнется с Землей».

Но это всего лишь домысли и догадки. В реальности не существует такого крупного астероида поблизости, который сможет нанести существенный вред нашей Луне.

Источник

Метеориты с Марса и Луны. Стоимость марсианских и лунных метеоритов

Что известно о марсианских и лунных метеоритах?

Раньше достоверно были известны только метеориты с Луны, потому, что существуют образцы лунного грунта. Но недавно подтвердилась гипотеза о метеоритах с Марса.

В пустыне Омана (Ближний Восток) 24 января 2000 года был обнаружен метеорит из базальта массой немного больше килограмма. Он получил имя Dhofar 019 . Как оказалось, это был метеорит с Марса.
В теле метеорита было обнаружено содержание изотопов благородных газов аргона, ксенона и криптона в виде микровключений.

По изотопам можно определить, откуда этот метеорит, каков его абсолютный возраст и когда он покинул свою родную планету.

Анализ показал, что состав изотопов газов метеорита соответствует марсианской атмосфере, о которой после полетов «Викингов» (1976-1978) многое известно. Возраст породы, слагающей метеорит, примерно 540 млн. лет. С поверхности Марса Dhofar 019 был выбит падением крупного астероида 20 млн. лет назад.

Все это время он блуждал в космосе, прежде чем столкнулся с Землей. Об этом свидетельствуют изотопы благородных газов, образующиеся только под действием галактических космических лучей.

Метеорит с Марса с окаменелыми бактериями

Но наибольшую мировую известность и практическую ценность для науки имеет марсианский метеорит ALH 84001.0 (Allan Hills 84001), обнаруженный 27.12.1984 г. в Антарктиде.

Ценность этого уникального метеорита, в том, что он относится к периоду времени, когда на Марсе была жидкая вода.

В ходе исследования этого ахондрита под электронным микроскопом учеными НАСА были обнаружены микроскопические окаменелые бактерии. Этот факт стал основанием для заявления ученых о реальных доказательствах жизни на Марсе.

Метеориты с Марса отличаются от других метеоритов особым химическим и минералогическим составом, но по сути это куски горных пород, выбитые с поверхности Марса миллионы лет назад.

По статистике каждый месяц на поверхность Земли падает в среднем один метеорит с Марса. Большинство этих метеоритов лежит на земле или на дне водоемов как обычные камни.

С момента падения астероида на поверхность Марса на нашу планету попало около 7,5% марсианского метеоритного материала. Достоверно никто не знает, сколько упавших метеоритов еще не найдено и сколько их еще упадет.

Метеориты с Марса продолжают находить. Шанс найти метеорит имеет каждый поисковик, даже не интересующийся поиском метеоритов, но использующий при поиске металлоискатель. Как вы можете узнать, что обнаруженный метеорит именно с Марса или Луны? Ответ на этот вопрос может дать только специальная организация, которая есть практически в каждой стране, и занимается идентификацией и регистрацией обнаруженных метеоритов.

Отчетливо видно с Земли, что вся поверхность Луны была подвержена многочисленным ударам астероидов, которые «вышибали» с поверхности каменную породу в космос, превращая ее в метеориты. Большая часть лунных метеоритов, оказавшись на орбите Земли, в конечном итоге попадают на поверхность нашей планеты.

Первый лунный метеорит был обнаружен в 1982 году, а в 2007 году в пустыне Сахара был найден самый крупный метеорит с Луны — NWA5000 (Northwest Africa 5000), страховая стоимость которого составила $9,610,000.

Происхождение метеоритов с Луны устанавливается в результате сравнения состава минералов, изотопов и химического состава исследуемого метеорита и известных образцов лунного грунта, доставленных с Луны американской миссией Appolo и беспилотными космическими аппаратами СССР.

Идентификация и регистрация обнаруженных метеоритов происходит с выдачей специального сертификата, или “паспорта” метеорита. Стоимость метеоритов с Марса или Луны, ввиду их редкости и уникальности достигает $1000 и более за грамм метеоритного вещества.

Related tags: метеориты с Марса, марсианские метеориты, редкие метеориты, дорогие метеориты, метеориты с Луны, стоимость марсианских метеоритов, стоимость лунных метеоритов, обнаружение редких метеоритов, марсианский метеоритный материал, Dhofar 019, ALH 84001, Allan Hills 8400, лунные метеориты, NWA5000

Источник

«Камни небесные» с Луны и Марса

Светлана Ивановна Демидова,
кандидат геолого-минералогических наук
«Химия и жизнь» №6, 2015

О классификации

Рис. 1. Фрагменты метеоритов в каменистой пустыне Омана

Один из основных источников информации о составе космического вещества Солнечной системы — метеориты. Среди них есть редкие гости с Луны и Марса. О том, как их обнаружили, как их распознать, и о многом другом пойдет речь в этой статье.

Сначала напомним несколько основных понятий. Метеориты бывают железные, железокаменные и каменные. Каменные метеориты состоят в основном из силикатов (оливина и пироксена) и, в свою очередь, подразделяются на два подкласса: хондриты и ахондриты. Хондриты получили свое имя благодаря тому, что они все (за редким исключением) содержат хондры, сферические образования менее миллиметра в диаметре, преимущественно силикатного состава, образовавшиеся в результате короткого локального нагрева небулярного газа и пыли. Метеориты этого подкласса образовались в протопланетном облаке.

Ахондриты не содержат хондр и представляют собой магматические (изверженные) породы либо брекчии, обломочные породы, возникшие в результате дробления и перемешивания в ходе ударных процессов. Ахондриты образовались не в протопланетном облаке, а уже в космических телах. Из-за плавления, причем в планетарных масштабах, и последующего фракционирования (разделения) расплавов и твердого вещества ахондриты так или иначе отличаются по составу от исходного хондритового материала. Поэтому по степени дифференцированности вещества материнского космического тела различают примитивные и дифференцированные ахондриты.

К дифференцированным, в частности, относятся лунные и марсианские метеориты. Именно марсианские называют также SNC-метеоритами — по имени метеоритов Shergotty, Nakhla, Chassigny. По этим метеоритам дали название и соответствующим подгруппам — шерготтиты, наклиты, шассиньиты. Для каждой из подгрупп характерны свои типы пород и составы.

Немного истории

Свидетельства о падениях метеоритных камней прослеживаются с VII века до н. э., они упомянуты в Библии, китайских рукописях, работах Ливия и Плутарха. В русских летописях падение метеорита впервые отмечено в 1091 году: «. Спаде превелик змий от небес, ужасошася вси людье. В се же время земля стукну, яко мнози слышаша. » (Лаврентьевская летопись).

В древности метеоритам приписывалось божественное происхождение, они были предметом почитания. Объяснить их природу пытался еще Диоген. Парацельс высказал мнение, что метеориты — внеземные объекты. Впервые о возможности падения на Землю камней с Луны заговорил итальянский астроном Джованни Батиста Ричолли еще в 1651 году. Тем удивительнее, что в период бурного развития науки в XVIII веке ученые пришли к заключению о невозможности падения метеоритов на Землю, что задержало развитие науки о метеоритах. Перелом в отношении ученых к метеоритам наступил на рубеже XVIII–XIX веков, в частности, благодаря работам выдающегося ученого, члена-корреспондента Петербургской Академии наук Э. Ф. Хладни.

На заре становления научной метеоритики предполагалось, что все метеориты (тогда их называли аэролитами) имеют лунное происхождение. Позднее эта гипотеза была математически обоснована и широко пропагандировалась. В те годы в газетах публиковались прогнозы о предстоящем падении камней с Луны, а в Париже торговали лунными камнями. Последующие многолетние исследования показали, что большинство метеоритов прибывает на Землю из пояса астероидов, идея о метеоритах с Луны была забыта на долгие годы. О возможности существования марсианских метеоритов в то время даже не помышляли.

Триумфальные космические программы XX века, доставка на Землю 382 кг лунных образцов в ходе миссий «Аполлон» и «Луна» в 1969–1976 годах позволили изучить их всеми доступными на тот момент методами и создать основательную базу знаний о составе Луны. Несмотря на это, первый лунный метеорит Yamato 791197, обнаруженный в ноябре 1979 года во льдах Антарктиды 20-й японской антарктической экспедицией, не смогли идентифицировать сразу из-за его внешнего сходства с некоторыми углистыми хондритами. Он долгое время оставался неизученным, поэтому первым лунным метеоритом считается ALHA81005, найденный в 1982 году там же, в Антарктиде. К настоящему времени на Земле обнаружено более 150 лунных метеоритов общей массой больше 80 кг. Их источники — примерно 70 различных метеоритных дождей. Фрагментами одного метеоритного дождя, то есть парными находками, считаются метеориты, найденные рядом, имеющие сходный состав и одинаковый земной возраст.

Примерно в то же время были идентифицированы марсианские метеориты. Их, в отличие от лунных, сравнивать было не с чем, и предположение об их марсианской природе сделали на основе нескольких косвенных признаков. Первая зацепка возникла, когда выявилась необычная группа метеоритов с молодым по «метеоритным» меркам кристаллизационным возрастом (он определяется методами изотопной геохронологии). Действительно, возраст большинства метеоритов, и хондритов, и ахондритов, — порядка 4,5 млрд лет, тогда как SNC-метеориты значительно моложе — в основном менее 1 млрд лет. Кроме того, оказалось, что они богаче летучими элементами (например, азотом, благородными газами) по сравнению с другими ахондритами. На основе этих наблюдений возникла идея, что источником SNC-метеоритов должно быть крупное планетное тело, сопоставимое по размерам с Землей, то есть способное удерживать летучие элементы и оставаться геологически активным длительное время после образования.

Читайте также:  Когда то земля не имела луны

Лучшим претендентом на эту роль был Марс — его размеры достаточно велики, и он имеет разреженную атмосферу, которая не так сильно препятствует выбросу материала с поверхности в космос, как могла бы атмосфера Венеры. Кроме того, можно было предположить, что на Марсе, при его размерах, достаточно и радиоактивных теплогенерирующих элементов для обеспечения продолжительной геологической активности. Окончательно утвердило ученых во мнении, что SNC-метеориты — пришельцы с Марса, исследование Дональда Богарда и Пратта Джонсона, которые в 1983 году изучили газовые пузырьки в некоторых шерготтитах. Они показали, что соотношения содержаний благородных газов и их изотопный состав соответствовали таковым в марсианской атмосфере, исследованной аппаратом «Викинг». На сегодня обнаружено около 70 марсианских метеоритов; некоторые из них могут быть фрагментами одного и того же метеоритного дождя.

Вы с Луны или Марса?

Чтобы отличить лунные и марсианские метеориты, посмотрим на их родителей. У Луны нет атмосферы, а на ее поверхности — рыхлый слой обломочного материала мощностью до 10 м — реголит. Он образовался за счет дробления и перемешивания материала коренных пород при метеоритной бомбардировке лунной поверхности. Коренные породы Луны подразделяют на две группы — материковые (это в основном анортозиты, состоящие из полевого шпата), и морские (базальты). Морские, конечно, не имеют отношения к водяным морям — морями называют темные участки поверхности. Материковые породы очень древние, возрастом до 4,5 млрд лет, что близко к времени формирования планетных тел. Образовались они преимущественно в период интенсивной метеоритной бомбардировки более 3,9 млрд лет назад. Поэтому материковые породы Луны — это в основном брекчии, обломочные породы. По окончании этого периода происходили излияния морских базальтов, главным образом 3,8–3,2 млрд лет назад. Лунные моря занимают 17% ее поверхности, приблизительно такова же доля морских метеоритов. Вообще, популяция лунных метеоритов соответствует составу лунной поверхности, среди них преобладают материковые метеориты, меньше морских и довольно много смешанных.

Большинство материковых и смешанных метеоритов, разумеется, представлено брекчиями — породами, содержащими обломки пород и минералов в похожей на стекло матрице, образовавшейся при ударе и плавлении. Среди морских метеоритов присутствуют как обычные базальты, так и базальтовые брекчии. Брекчиями они стали потому, что метеоритная бомбардировка продолжается до сих пор, только масштабы ее уменьшились, и реголит, образовавшийся в районе морей, имеет меньшую мощность, чем в районе материков.

Теперь о другом родителе — Марсе. Его поверхность также покрыта чехлом реголита, но не таким мощным, как на Луне. На Марсе его образованию способствовали не только метеоритная бомбардировка, но и выветривание. Когда-то у Марса имелась довольно плотная атмосфера, которая обеспечивала относительно теплый климат и наличие жидкой воды на поверхности. Об этом свидетельствует присутствие, вероятно, самых впечатляющих форм марсианского рельефа, так называемых долин истечения, — это сухие русла, напоминающие земную речную сеть. Затем атмосфера становилась всё более разреженной, что постепенно привело к полному опустыниванию. Все это сопровождалось периодами вулканической активности; ее продукты на поверхности Марса — базальтовые покровы и щитовые вулканы. Как и на Земле, на Марсе важную роль играли процессы накопления осадков.

Все SNC-метеориты — это магматические породы основного и ультраосновного состава (главные минералы: пироксен, оливин, плагиоклаз), которые образовались при кристаллизации базальтовых магм. Интересно, что, несмотря на большое количество ударных кратеров на поверхности Марса, из 70 известных марсианских метеоритов лишь один метеорит NWA 7034 представлен импактной брекчией, хотя все SNC-метеориты несут в себе признаки ударного воздействия. Кроме того, среди них не известно ни одного образца осадочных пород с Марса, подобных найденным космическими аппаратами «Opportunity» и «Curiosity». То ли это связано с непредставительностью выборки марсианских метеоритов, то ли с невысокой прочностью таких пород, к тому же велика вероятность спутать их с земными осадочными породами. Но в любом случае новые находки марсианских метеоритов могут преподнести сюрпризы.

К исследователю попал ахондрит

Откуда он? С Луны? С Марса? Или еще откуда-нибудь?

Если метеорит брекчирован, содержит более 50% плагиоклаза, причем плагиоклаз кальциевый (анортит), то, скорее всего, это лунный материковый метеорит, что можно подтвердить дополнительными критериями. Если плагиоклаза менее 50%, тут возможны варианты: это может быть лунный морской метеорит, или марсианский метеорит, или метеорит группы говардитов, эвкритов, диогенитов (HED), источником которых считается астероид Веста.

Другой идентификационный признак лунных и марсианских метеоритов — Fe/Mn-отношение в главных породообразующих минералах оливине и пироксене. Для лунных пород в оливинах оно составляет приблизительно 89, а в пироксенах — 54. Для марсианских соответственно около 43 и 30.

Еще критерий, универсальный не только для лунных, марсианских, но и для всех метеоритов, — изотопный состав кислорода. Он отражает первичные характеристики вещества и имеет специфические особенности в разных космических телах. В отличие от марсианских метеоритов с их неповторимым изотопным составом кислорода, лунные породы по этому признаку неотличимы от земных.

Но спутать лунное вещество с земным невозможно из-за его минерального состава. Как уже отмечалось ранее, главный минерал материковых пород — плагиоклаз, имеющий состав анортита, — на Земле встречается нечасто. В земных породах, так же, как и в марсианских, плагиоклаз содержит больше щелочных элементов. Есть различия и в химическом составе других породообразующих минералов — оливинов и пироксенов. Типично лунные акцессорные минералы — армолколит, транквиллитиит, пироксферроит — были впервые обнаружены в лунных образцах и лишь позднее в земных породах, где они крайне редки, а в марсианских их вообще нет. В последних, в свою очередь, можно найти магнетит, которого вы не увидите в лунных породах. Это объясняется существенными различиями в окислительно-восстановительных условиях на Луне и Марсе. Поэтому, в частности, в SNC-метеоритах отсутствует Fe,Ni-металл — природный сплав Fe и Ni, а в лунном веществе он обычно есть. Другое следствие — аномальное поведение европия в процессе образования лунных пород. В окислительных условиях Земли и Марса Eu подобно другим редкоземельным элементам проявляет валентность +3 и не отделяется от них, тогда как в восстановительной обстановке Луны европий двухвалентен и концентрируется в плагиоклазе, замещая в нем кальций.

Читайте также:  Система земля луна история

Важнейшая особенность лунных пород — отсутствие в них воды и других легколетучих соединений, поэтому водосодержащих минералов на Луне нет, что значительно обедняет разнообразие минеральных видов. Хотя сейчас считается, что в небольших количествах вода в виде льда может находиться в районе лунных полюсов. Присутствие воды на Марсе, хоть и в прошлом, привело к образованию вторичных глинистых минералов и карбонатов, которые редко, но встречаются во всех SNC-метеоритах, особенно в наклитах и ALH84001. Именно в последнем были обнаружены карбонатные образования с включениями углеводородов и магнетита специфической морфологии, которые из-за предположения об их биогенном происхождении принесли ему мировую известность (см. «Химию и жизнь», 1997, №3, «Есть ли выгода от жизни на Марсе»). Однако большинство ученых сейчас придерживаются абиогенной гипотезы их образования.

К сожалению, многие пустынные находки имеют подобную вторичную минерализацию, то есть содержат карбонаты и глинистые минералы, но уже земного происхождения, и, чтобы отличить одно от другого, нужны дополнительные трудоемкие исследования. К счастью,некоторые марсианские метеориты, например Chassigny, Shergotty, Nakhla, Tissint и Zagami, — свежие падения, собранные сразу же после приземления, антарктические находки тоже не несут в себе следов пребывания на Земле. Что касается обстоятельств падения лунных метеоритов, то их никто никогда не видел. Удивительно, но все 180 лунных метеоритов — находки, то есть метеориты, падения которых никто не наблюдал.

Окончательно убеждает исследователя в происхождении метеорита его возраст. Лунные метеориты гораздо старше марсианских. Исключение составляет уникальный метеорит ALH 84001 (4,5 млрд лет), все остальные марсианские образцы существенно младше —0,1–1,4 млрд лет.

И последнее: конечно, для определения всех этих параметров требуются серьезные исследования с использованием современной техники, однако специалисту часто бывает достаточно взглянуть в микроскоп, чтобы определить источник метеорита.

Где ищут и находят

Метеориты падали всегда и везде, но обнаружить их в горах или лесах трудно, кроме тех случаев, когда наблюдают падение или рассеяние фрагментов метеоритного дождя и можно указать участок поиска. Однако на Земле существуют места, где метеориты найти легче. В Антарктиде метеориты стали находить с самого начала изучения этого континента. Первый метеорит был найден в 1912 году, еще несколько — в 1960-х, но поворотное событие случилось в 1969 году, когда японские ученые обнаружили сразу девять метеоритов на площади 3 км 2 . Самым удивительным оказалось то, что эти метеориты представляли пять разных типов. Далее последовали успешные японские и американские антарктические экспедиции по сбору метеоритного вещества, в результате которых было получено более 40 000 образцов.

С чем же связано такое богатство Антарктиды? Прежде всего, темные метеориты хорошо видны на белой поверхности, а холодный сухой климат позволяет им хорошо сохраниться. Кроме того, в некоторых местах они могут и концентрироваться. Метеориты выпадают на поверхность и с течением времени оказываются погребенными в мощном слое снега и льда. Если ледник начинает двигаться к краю материка в более теплую область и встречает на своем пути преграду, затрудняющую его дальнейшее продвижение, например горный хребет, то, остановившись, лед сублимирует и на поверхности ледника остаются метеориты, которые можно собирать.

Другое хорошее место для сбора метеоритов — пустыни. Впервые идею о поиске метеоритов в пустыне высказал Антуан де Сент-Экзюпери в повести «Планета людей»: «На скатерть, разостланную под яблоней, может упасть только яблоко, на скатерть, разостланную под звездами, может падать только звездная пыль, — никогда ни один метеорит не показывал так ясно, откуда он родом». Одновременно с находками в Антарктиде были обнаружены метеориты в пустынях Австралии, где с 1971 года ведется их систематический поиск. С 1986 года стали успешно собирать метеориты в Сахаре, а с 1999-го — и в пустынях Аравийского полуострова. Излюбленные места поиска — каменистые пустыни, их поверхность подолгу остается неизменной, а сухой климат способствует сохранности метеоритов. Если есть вода, то она проникает по трещинкам, и из-за эффекта Ребиндера (расклинивающее действие) может разрушить метеорит, кроме того, образуются более хрупкие вторичные минералы, то есть со временем метеориты рассыпаются, так же, как и земные породы. В сухом климате метеориты выживают лучше и накапливаются. На сегодня в пустынях собрано около 15 000 метеоритов, и их количество растет. Обычно поиск ведут так называемые охотники за метеоритами, участники специальных экспедиций или энтузиасты, либо местные жители.

Называют метеориты по месту их нахождения. Например, метеориты под названием Yamato собраны в Антарктиде близ одноименного горного хребта, метеориты NWA (North West Africa) — в районе Западной Сахары. Все антарктические и большинство пустынных находок не имеют точных координат места находки, а жаль: многие метеориты выпадают в виде метеоритных дождей, определение же парности (то есть принадлежности к одному метеоритному дождю) — задача нелегкая.

В заключение приведем слова немецкого философа Иоганна Готлиба Фихте: «Ничто истинное и полезное, раз оно стало достоянием человечества, не пропадет даром, хотя бы лишь отдаленное потомство научилось этим пользоваться». Метеориты были и остаются источником уникальных знаний и новых неожиданных открытий, и нам повезло, что мы живем на Земле, — потому что у жителей Луны и Марса шансов найти метеориты с Земли практически нет.

Что еще можно прочитать о метеоритах:
Сайт лаборатории метеоритики ГЕОХИ РАН (много полезной информации, а также рекомендации тем, кто нашел метеорит или наблюдал его падение).
Лунные метеориты.
Марсианские метеориты.

Источник

Adblock
detector