Меню

Методы наблюдения за космосом

Как наблюдать за объектами космоса

Наблюдайте за объектами глубокого космоса Вселенной: астрономический календарь для Солнца, планет, затмений, звезд, комет, метеоров, скоплений, туманностей.

Любительская астрономия – это астрономические наблюдения людей, которые не имеют специального астрономического образования. Как и профессиональные астрономы, энтузиасты имеют немалый опыт в проведении наблюдений, исследований, астрофотографии всевозможных объектов глубокого космоса. И нередко именно любители демонстрируют весьма серьезные результаты своей работы.

У вас есть возможность наблюдать за космосом онлайн в режиме реального времени с помощью нашего раздела с телескопами. На этой странице предоставлены все необходимые инструменты (календари, карты звездного неба и советы), чтобы отыскать необходимые небесные тела самостоятельно в любое время. В подсказках вы найдете также советы о том как правильно выбрать необходимую технику и какой телескоп купить, чтобы увидеть тот или иной космический объект.

Астрономический календарь

Календарь помогает исследовать космос наиболее полноценным путем. Для удобства пользования астрономам-любителям предлагаем вашему вниманию календарь астрономических событий:

Астрономический календарь на 2019 год

Астрономический календарь — базовый инструмент для любого астронома, потому что предоставляет информацию обо всех астрономических событиях: прибытие кометы или астероида, сближение планет, циклы и пятна Солнца, фазы Луны, и атмосферные явления, вроде полярных сияний. Не упускает он из вида и объекты глубокого космоса, открывая координаты двойных звезд, туманностей и шаровых скоплений. По сути, это самые важные новости космоса и Вселенной, доступные в наиболее емкой и содержательной форме.

Предоставляем удобный астрономический календарь 2019 года для астрофотографов, которые не хотят пропустить самые интересные события в этом году.

Нажмите на календарь, чтобы увидеть полный размер

В каждом месяце в форме таблицы расписаны все предстоящие астрономические события. Вы могли заметить, что некоторые даты выделены в квадраты темного, серого и светло-серого цветов. Таким образом, отмечается уровень освещения ночного неба Луной. Есть также цвета для цифр. Зеленый указывает на пик активности метеорных потоков, красный – необычные расположения Луны, планет и других небесных тел, а синий – затмения. Изучите пример на нижнем фото.

Давайте рассмотрим все самые важные астрономические события 2019 года:

  • Январь 2 — Соединение Луны (0.14) и Венеры, рядом — Юпитер
  • Январь 3 — Соединение Луны (0.07) и Юпитера возле созвездия Скорпиона, рядом — Венера
  • Январь 4 — Пик активности метеорного потока Квадрантид
  • Январь 6 — Частичное солнечное затмение (Дальний Восток)
  • Январь 21 — Полное лунное затмение (Северная и Южная Америка, Западная Африка, Западная Европа)
  • Январь 22 — Соединение Венеры и Юпитера
  • Февраль 1 — Луна (0.12), Венера и Юпитер возле созвездия Скорпиона
  • Февраль 2 — Тонкий серп Луны (0.06) у горизонта, рядом — Венера и Юпитер возле созвездия Скорпиона
  • Февраль 18 — Соединение Венеры и Сатурна
  • Март 2 — Луна (0.17), Венера и Сатурн, рядом — Юпитер и созвездие Скорпиона
  • Март 3 — Соединение Луны (0.1) и Венеры
  • Апрель 8 — Тонкий серп Луны (0.06) у горизонта, рядом — Марс в созвездии Тельца
  • Апрель 22 — Пик метеорного потока Лириды
  • Май 6 — Пик метеорного потока Эта-Аквариды
  • Май 7 — Тонкий серп Луны (0.04) у горизонта, рядом — Марс между созвездиями Близнецов и Возничего
  • Июнь 11 — Юпитер в противостоянии
  • Июль 2 — Полное солнечное затмение (Чили, Аргентина)
  • Июль 10 — Сатурн в противостоянии
  • Июль 16 — Частичное лунное затмение (Южная Америка, Африка, Антарктида, Австралия, Европа, Азия (кроме Дальнего Востока)
  • Июль 28 — Пик метеорного потока Южных дельта-Акварид
  • Июль 29 — Луна (0.13) между созвездиями Тельца и Возничего
  • Август 12 — Пик метеорного потока Персеид
  • Август 28 — Луна (0.08) и скопление “Ясли” (М44), рядом — созвездия Близнецов и Малого пса
  • Сентябрь 26 — Луна (0.1) в созвездии Льва, рядом — скопление “Ясли” (М44) в созвездии Рака
  • Октябрь 21 — Пик метеорного потока Орионид
  • Октябрь 31 — Соединение Юпитера и Венеры
  • Ноябрь 17 — Пик метеорного потока Леониды
  • Ноябрь 24 — Луна (0,08), Меркурий, Марс и звезда Спика
  • Ноябрь 25 — Соединение Луны (0.03) и Меркурия, рядом — Марс и звезда Спика
  • Декабрь 11 — Соединение Венеры и Сатурна
  • Декабрь 14 — Пик метеорного потока Геминид
  • Декабрь 23 — Луна (0.1) и Марс в созвездии Весов
  • Декабрь 28 — Луна (0.08) и Венера в созвездии Козерога.

Напомним, что сегодня астрофотография (фото космоса и объектов) и наблюдательная астрономия фактически относятся к любительской астрономии. В связи с этим приведем космические объекты, которые традиционно становятся предметом внимания непрофессионалов:

Объекты наблюдения

Солнце

Солнечная активность, факельные поля в районах магнитной активности, протуберанцы, пятна, циклы и прочие явления.

Луна

При помощи телескопов с трубой 60-500 мм можно понять, какая Луна сегодня, и исследовать детали на поверхности единственного спутника Земли: долины, горы, кратеры, моря.

Планеты

Планеты. Постоянно меняющиеся детали на планетарных дисках. Венера и Меркурий демонстрируют фазы освещенности, а при съемке в инфракрасном диапазоне можно увидеть детали в атмосфере Венеры, а на Марсе астрономы-любители наблюдают сезонные трансформации полярных шапок, активные пылевые бури, краски поверхности, редкие облака. Атмосфера Юпитера также нестабильна. Наибольшее внимание заслуживает Большое красное пятно.

Атмосфера Сатурна не так интересна, однако его знаменитые кольца поражают своей живописностью. С помощью любительских инструментов можно рассмотреть только диск Урана и Нептуна.

Статьи:

Затмения

Частные солнечные и лунные затмения в определенной точке можно наблюдать один-два раза. А полные солнечные затмения в одной точке случаются примерно один раз в 250 лет.

Статьи:

Объекты глубокого космоса

Туманности, шаровые и рассеянные звездные скопления, галактики.

Статьи:

Двойные звезды

Это тесные пары звезд, которые с Земли визуализируются как звезды на небольшом угловом расстоянии.

Статьи:

Кометы

Огромное число астрономов-любителей предпочитают наблюдать кометы, поведение которых редко укладывается в рамки строгих прогнозов. Здесь наблюдателям доступно исследование блеска, степени конденсации, размера комы, длины и позиционного хвоста угла, а также яркости ядра кометы.

Метеоры

Как правило, любители астрономии исследуют падающие звезды (метеоры) в моменты максимальной активности крупных метеорных потоков: Персеиды, Квадрантиды, Геминиды, Леониды. Анализу обычно подвергаются такие параметры, как время появления, направление и скорость движения, яркость, длина видимого пути, цвет, остаточные явления, время полета. В данный момент активно развивается сегмент радионаблюдений метеорных потоков в дневное время.

Читайте также:  Название конкурса по теме космос

Астероиды

Визуализируются как звездообразные объекты без очевидных угловых размеров и каких-либо деталей. От звезд они отличаются быстрым перемещением по небосклону. Из-за темных и светлых пятен на поверхности астероидов, а также из-за их неправильной формы блеск астероидов может постоянно меняться.

Атмосферные явления

Полярные сияния, Серебристые облака, Гало.

Достижения астрономов-любителей

Может быть, вы сомневаетесь в том, что астроном-любитель может сделать хоть сколько-нибудь значительное астрономическое открытие. Но факты говорят сами о себе. К примеру, Уильям Гершель открыл планету Уран, несмотря на то, что по образованию был музыкантом, а астрономия была его страстным увлечением. Кэролайн Мур – самая юная девушка-астроном, которая открыла сверхновую звезду SN 2008ha в галактике UGC 12682 в созвездии Пегаса, будучи четырнадцатилетней девушкой. А Карл Людвиг Хенке открыл два астероида в 1803 и 1830 годах, служа на почте в Пруссии.

Поэтому и вы можете достичь немалых результатов, занимаясь любительской астрономией. Используйте советы сайта по наблюдению за планетами, звездами, Солнцем, туманностями, метеорами и кометами, чтобы открыть что-то новое во Вселенной или сделать фото космоса в высоком качестве для личного пользования, научных целей или для популяризации космологии. Конечно, вам будет далеко до фото телескопа Хаббл, однако история показывает, что новички и непрофессиональные астрономы совершили много великих открытий, которые двигали науку вперед. Станьте одним из таких счастливчиков.

Источник

Методы наблюдения за космосом

1. Особенности астрономии и её методов

О громные пространственно-временные масштабы изучаемых объектов и явлений определяют отличительные особенности астрономии.

Сведения о том, что происходит за пределами Земли в космическом пространстве, учёные получают главным образом на основе приходящего от этих объектов света и других видов излучения. Наблюдения — основной источник информации в астрономии. Эта первая особенность астрономии отличает её от других естественных наук (например, физики или химии), где значительную роль играют опыты и эксперименты, планируемые в лабораториях. Возможности проведения экспериментов за пределами Земли появились лишь благодаря космонавтике. Но и в этих случаях речь идёт о проведении исследований небольшого масштаба, таких, например, как изучение химического состава лунных или марсианских пород. Трудно представить себе эксперименты над планетой в целом, звездой или галактикой.

Вторая особенность объясняется значительной продолжительностью целого ряда изучаемых в астрономии явлений (от сотен до миллионов и миллиардов лет). Поэтому непосредственно наблюдать многие из происходящих явлений невозможно. Когда явления происходят особенно медленно, приходится проводить наблюдения многих родственных между собой объектов, например звёзд. Основные сведения об эволюции звёзд получены именно таким способом. Более подробно об этом будет рассказано далее.

Третья особенность астрономии обусловлена необходимостью указать положение небесных тел в пространстве (их координаты) и невозможностью сразу указать, какое из них находится ближе, а какое дальше от нас. На первый взгляд, все наблюдаемые светила кажутся нам одинаково далёкими.

Люди в древности считали, что все звёзды располагаются на небесной сфере, которая вращается вокруг Земли как единое целое. Уже более 2000 лет тому назад астрономы стали применять способы, которые позволяли указать расположение любого светила на небесной сфере по отношению к другим космическим объектам или наземным ориентирам. Представлением о небесной сфере удобно пользоваться и теперь, хотя мы знаем, что реально этой сферы не существует.

Построим небесную сферу и проведём из её центра луч по направлению к звезде A (рис. 1.1). Там, где этот луч пересечёт поверхность сферы, поместим точку A 1 , изображающую эту звезду. Звезда B будет изображаться точкой B 1 . Повторив подобную операцию для всех наблюдаемых звёзд, мы получим на поверхности сферы изображение звёздного неба — звёздный глобус. Ясно, что если наблюдатель находится в центре этой воображаемой сферы, то для него направления на сами звёзды и на их изображения на сфере будут совпадать. Расстояния между звёздами на небесной сфере можно выражать только в угловой мере. Эти угловые расстояния измеряются величиной центрального угла между лучами, направленными на одну и другую звезду, или соответствующей им дуги на поверхности сферы.

Рис. 1.1. Небесная сфера

Рис. 1.2. Оценка угловых расстояний на небе

Для приближённой оценки угловых расстояний на небе полезно запомнить такие данные: угловое расстояние между двумя крайними звёздами ковша Большой Медведицы ( α и β ) составляет около 5 ° (рис. 1.2), а от α Большой Медведицы до α Малой Медведицы (Полярной звезды) — в 5 раз больше — примерно 25 ° . Простейшие глазомерные оценки угловых расстояний можно провести также с помощью пальцев вытянутой руки.

Только два светила — Солнце и Луну — мы видим как диски. Угловые диаметры этих дисков почти одинаковы — около 30 ʹ или 0,5 ° . Угловые размеры планет и звёзд значительно меньше, поэтому мы их видим просто как светящиеся точки. Для невооружённого глаза объект не выглядит точкой в том случае, если его угловые размеры превышают 2—3 ʹ . Это означает, в частности, что наш глаз различает каждую светящуюся точку (звезду) отдельно от другой звезды в том случае, если угловое расстояние между ними больше этой величины. Иначе говоря, мы видим объект не точечным лишь в том случае, если расстояние до него превышает его размеры не более чем в 1700 раз.

О том, как на основании угловых измерений определяют расстояния до небесных тел и их линейные размеры, будет рассказано далее.

Чтобы отыскать на небе светило, надо указать, в какой стороне горизонта и как высоко над ним оно находится. С этой целью используется система горизонтальных координат — азимут и высота . Для наблюдателя, находящегося в любой точке Земли, нетрудно определить вертикальное и горизонтальное направления. Первое из них определяется с помощью отвеса и изображается на чертеже (рис. 1.3) отвесной линией ZZ ʹ , проходящей через центр сферы (точку O ). Точка Z , расположенная прямо над головой наблюдателя, называется зенитом . Плоскость, которая проходит через центр сферы перпендикулярно отвесной линии, образует при пересечении со сферой окружность — истинный или математический горизонт . Высота светила отсчитывается по окружности, проходящей через зенит и светило M , и выражается длиной дуги этой окружности от горизонта до светила. Эту дугу и соответствующий ей угол принято обозначать буквой h . Высота светила, которое находится в зените, равна 90 ° , на горизонте — 0 ° . Положение светила относительно сторон горизонта указывает его вторая координата — азимут , обозначаемый буквой A . Азимут отсчитывается от точки юга в направлении движения часовой стрелки, так что азимут точки юга равен 0 ° , точки запада — 90 ° и т. д. Обратите внимание, что определение астрономического азимута отличается от географического азимута, который традиционно отсчитывается от точки севера.

Читайте также:  Свежие новости про космос 2021

Рис. 1.3. Система горизонтальных координат

Горизонтальные координаты указывают положение светила на небе в данный момент и вследствие вращения Земли непрерывно меняются. На практике, например в геодезии, высоту и азимут измеряют специальными угломерными оптическими приборами — теодолитами .

О сновным прибором, который используется в астрономии для наблюдения небесных тел, приёма и анализа приходящего от них излучения, является телескоп . Слово это происходит от двух греческих слов: tele — далеко и skopéо — смотрю.

Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооружённому глазу. Чем более слабые объекты даёт возможность увидеть телескоп, тем больше его проницающая сила . Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.

Количество света, собираемого объективом, возрастает пропорционально его площади (квадрату диаметра) (рис. 1.4). Диаметр зрачка человеческого глаза даже в полной темноте не превышает 8 мм. Объектив телескопа может превышать по диаметру зрачок глаза в десятки и сотни раз. С помощью телескопов и современных приёмников излучения возможно обнаружить звёзды и другие объекты, которые в 100 млн раз слабее объектов, видимых невооружённым глазом.

Рис. 1.4. Собирание света объективом телескопа

Чем меньше размер изображения светящейся точки (звезды), которое даёт объектив телескопа, тем лучше его разрешающая способность. Если расстояние между изображениями двух звёзд меньше размера самого изображения, то они сливаются в одно. Вследствие дифракции изображение звезды будет не точкой, а ярким пятном — дифракционным диском, угловой диаметр которого равен

α = • 2,44,

где λ — длина световой волны, а D — диаметр объектива телескопа, 206 265 — число секунд в радиане. У школьного телескопа, диаметр объектива которого составляет 60 мм, теоретическая разрешающая способность будет равна примерно 2 ʺ . Напомним, что это превышает разрешающую способность невооружённого глаза (в среднем) в 60 раз. Реальная разрешающая способность телескопа будет меньше, поскольку на качество изображения существенно влияет состояние атмосферы, движение воздуха.

Если в качестве объектива телескопа используется линза, то такой телескоп называется рефрактором (от лат. refracto — преломляю), а если вогнутое зеркало, — то рефлектор (reflecto — отражаю).

Помимо рефракторов и рефлекторов в настоящее время используются различные типы зеркально-линзовых телескопов, один из которых — менисковый — представлен на рисунке 1.5.

Рис. 1.5. Менисковый телескоп

Рис. 1.6. Построение изображения в телескопе

У небольших телескопов объективом, как правило, служит двояковыпуклая собирающая линза. Как известно, если предмет находится дальше двойного фокусного расстояния, она даёт его уменьшенное, перевёрнутое и действительное изображение. Это изображение располагается между точками фокуса и двойного фокуса линзы. Расстояния до Луны, планет, а тем более звёзд так велики, что лучи, приходящие от них, можно считать параллельными. Следовательно, изображение объекта будет располагаться в фокальной плоскости.

Построим изображение Луны, которое даёт объектив 1 с фокусным расстоянием F (рис. 1.6). Объектив строит изображение объекта, линейные размеры которого определяются фокусным расстоянием F и угловыми размерами α объекта на небе. Воспользуемся теперь ещё одной линзой — окуляром 2 , поместив её от изображения Луны (точка F 1 ) на расстоянии, равном фокусному расстоянию этой линзы — f . Фокусное расстояние окуляра должно быть меньше, чем фокусное расстояние объектива. Построив изображение, которое даёт окуляр, мы убедимся, что он увеличивает угловые размеры Луны: угол β заметно больше угла α .

Если изображение, даваемое объективом, находится вблизи фокальной плоскости окуляра, увеличение, которое обеспечивает телескоп, равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра:

W = .

Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, но звёзды из-за их колоссальной удалённости всё равно видны в телескоп как светящиеся точки.

Имея сменные окуляры, можно с одним и тем же объективом получать различное увеличение. Поэтому возможности телескопа в астрономии принято характеризовать не увеличением, а диаметром его объектива. При визуальных астрономических наблюдениях обычно используют увеличения не более 100 раз. Применять бо́льшие увеличения мешает атмосфера Земли. Движение воздуха, незаметное невооружённым глазом (или при малых увеличениях), приводит к тому, что мелкие детали изображения становятся нерезкими, размытыми. Это мешает и современным наблюдениям с фотоэлектронными приёмниками света. Поэтому астрономические обсерватории, на которых используются крупные телескопы, размещаются в районах с хорошим астроклиматом: большим количеством ясных дней и ночей, с высокой прозрачностью и стабильностью атмосферы, на высоте нескольких километров над уровнем моря.

Современный телескоп представляет собой сложное устройство, которое имеет предельно точную оптику малых и больших размеров, наилучшие из существующих приёмники излучения и обширный комплекс научной и обслуживающей аппаратуры. Все наиболее крупные современные телескопы — это телескопы-рефлекторы.

Рис. 1.7. Шестиметровый телескоп-рефлектор

Крупнейший в России телескоп-рефлектор (рис. 1.7) имеет зеркало диаметром 6 м, отшлифованное с точностью до долей микрометра. Фокусное расстояние зеркала 24 м. Его масса около 40 т. Масса всей установки телескопа более 850 т, а высота 42 м. Управление телескопом осуществляется с помощью компьютера, который позволяет точно навести телескоп на изучаемый объект и длительное время удерживать его в поле зрения, плавно поворачивая телескоп вслед за вращением Земли. Телескоп входит в состав Специальной астрофизической обсерватории Российской академии наук и установлен на Северном Кавказе (близ станицы Зеленчукская в Кабардино-Балкарии) на высоте 2100 м над уровнем моря.

Крупнейший в мире телескоп установлен на острове Ла Пальма (Канарские острова) у побережья Африки. «Глаз» этого телескопа — зеркало диаметром 10,4 м. Площадь его поверхности составляет 82 м 2 , а состоит оно из 36 шестиугольных фрагментов. Оказалось, что такие огромные зеркала лучше собирать из отдельных тонких частей. Изготавливаются они не из стекла, а из более лёгких синтетических материалов. Цельное зеркало будет деформироваться под собственной тяжестью. Чтобы составное зеркало сохраняло необходимую форму, положение отдельных частей корректируется специальными приспособлениями (актюаторами), которыми управляет компьютер. Телескоп, где такая корректировка выполняется 2 раза в секунду, может обеспечить разрешающую способность около 0,4 ʺ . В настоящее время обсуждаются вполне реальные проекты создания телескопов с зеркалами диаметром 25—40 м, устроенными по такому же принципу, а в перспективе намечается создание 100-метрового телескопа-рефлектора.

Читайте также:  Приключение фантастика космос лучшее

Астрономы уже давно не ведут визуальных наблюдений. На смену им в XIX в. пришла фотография, а в настоящее время её во многих случаях заменяют электронные приёмники света. Наибольшее распространение получили полупроводниковые приборы с зарядовой связью (сокращённо ПЗС). Матрицы ПЗС, которые применяются в современных цифровых фотоаппаратах, по своему устройству аналогичны тем, которые используются в астрономии. Важнейшим качеством ПЗС, в которых используется внутренний фотоэффект, является их высокая чувствительность. Они регистрируют практически каждый попавший на них фотон. Не менее важно и то, что запись полученных при этом изображений ведётся с помощью компьютера. Такая запись удобна для проведения различных исследований и передачи другим учёным. Некоторые телескопы используются для того, чтобы полученное изображение через компьютер передавать непосредственно пользователям Интернета. Это позволяет участвовать в наблюдениях за космическими объектами многим людям, которые интересуются астрономией, в том числе школьникам.

ПЗС незаменимы для телескопов, которые работают в автоматическом режиме, без участия человека. В частности, это касается космического телескопа «Хаббл», который обращается вокруг Земли на высоте около 600 км. Находясь за пределами основной массы атмосферы, этот телескоп с зеркалом диаметром 2,4 м позволяет изучать объекты, которые в 10—15 раз слабее объектов, доступных такому же наземному телескопу. Телескоп «Хаббл» обеспечивает разрешающую способность 0,1 ʺ , что недостижимо даже для более крупных наземных телескопов. Под таким углом футбольный мяч виден с расстояния 450 км. Выбор объектов наблюдения и обработка полученных благодаря телескопу «Хаббл» результатов проводится специалистами многих стран. За время его работы на Землю было передано свыше восьмисот тысяч высококачественных фотографий различных космических объектов. В их числе изображения самых далёких галактик, которые образовались более 13 млрд лет назад. На цветной вклейке XV (рис. 3) показано, как выглядит область звёздообразования, находящаяся в звёздном скоплении М16 на расстоянии около 7 тыс. световых лет от Земли.

В настоящее время астрономию называют всеволновой, поскольку наблюдения за объектами ведутся не только в оптическом диапазоне. Для этой цели используются различные приборы, каждый из которых способен принимать излучение в определённом диапазоне электромагнитных волн: гамма-, рентгеновское, ультрафиолетовое, инфракрасное и радиоизлучение.

Только оптическое и, по большей части, радиоизлучение из космоса достигает поверхности Земли без значительного поглощения. Остальные виды излучения сквозь земную атмосферу практически не проникают, она их рассеивает и поглощает. Поэтому телескопы для проведения исследований Вселенной в этих диапазонах длин волн устанавливаются на искусственных спутниках, орбитальных станциях и других космических аппаратах.

Рис. 1.8. Радиотелескоп

Для приёма радиоизлучения различных космических объектов используются радиотелескопы. Основные элементы устройства радиотелескопа — это антенна, приёмник и приборы для регистрации сигнала. У большинства радиотелескопов антенны, которые достигают в диаметре 100 м, по форме такие же, как вогнутые зеркала телескопа-рефлектора (рис. 1.8), но собирающие не свет, а радиоволны. Ведь чем больше площадь антенны, тем более слабый источник радиоизлучения можно зарегистрировать.

Антенна преобразует принятые ею электромагнитные волны в электрические сигналы, которые затем передаются к высокочувствительному приёмнику. В современных радиотелескопах для регистрации сигналов используется компьютер, который сначала запоминает их в цифровой форме, а затем представляет полученные результаты в наглядном виде.

Существенно возрастают возможности радиотелескопов, если их антенны объединить в систему и использовать для изучения одного и того же объекта. Например, система, которая состоит из 27 антенн диаметром 25 м каждая, расположенных в определённом порядке, позволяет достичь углового разрешения 0,04 ʺ . Это соответствует возможностям радиотелескопа с антенной диаметром 35 км.

В 2011 г. российские учёные приступили к реализации масштабного международного проекта «Радиоастрон». На основе выведенного на околоземную орбиту радиотелескопа «Спектр-Р» (диаметр антенны 10 м) и радиотелескопов, расположенных на всех континентах земного шара, создаётся единая наземно-космическая система для изучения различных объектов Вселенной в радиодиапазоне (цветная вклейка I, рис. 2). Двигаясь по вытянутой эллиптической орбите, «Спектр-Р» может удаляться от Земли на расстояние порядка 350 тыс. км. Таким образом, создаваемая система по своим возможностям соответствует радиотелескопу с антенной такого колоссального размера. Она обладает исключительно высокой разрешающей способностью порядка миллионных долей угловой секунды. Это в 250 раз лучше, чем можно добиться с помощью наземной сети радиотелескопов, и более чем в 1000 раз лучше, чем достигнуто телескопом «Хаббл» в оптическом диапазоне.

Реализация проекта «Радиоастрон» позволила получить новые данные о таких явлениях и процессах, как нейтронные звёзды и сверхмассивные чёрные дыры, о строении и динамике областей звёздообразования в нашей Галактике, а также продвинуться в изучении структуры и эволюции Вселенной.

В опросы 1. В чём состоят особенности астрономии? 2. Какие координаты светил называются горизонтальными? 3. Опишите, как координаты Солнца будут меняться в процессе его движения над горизонтом в течение суток. 4. По своему линейному размеру диаметр Солнца больше диаметра Луны примерно в 400 раз. Почему их угловые диаметры почти равны? 5. Для чего используется телескоп? 6. Что считается главной характеристикой телескопа? 7. Почему при наблюдениях в телескоп светила уходят из поля зрения?

У пражнение 1 1. Каково увеличение телескопа, если в качестве его объектива используется линза, оптическая сила которой 0,4 дптр, а в качестве окуляра линза с оптической силой 10 дптр? 2. Во сколько раз больше света, чем телескоп-рефрактор (диаметр объектива 60 мм), собирает крупнейший российский телескоп-рефлектор (диаметр зеркала 6 м)?

З адание 2 Подберите линзы, необходимые для изготовления простейшего телескопа-рефрактора. Измерив оптическую силу объектива и окуляра, определите, какое увеличение может обеспечить такой телескоп.

Источник

Adblock
detector