Меню

Модель горячей вселенной реликтовое излучение доклад

Модель горячей Вселенной

доклад: Наука и техника

Модель горячей Вселенной

Американский физик Георгий Антонович Гамов в 1946 году заложил основы одной из фундаментальных концепций современной космологии — модели «горячей Вселенной».

В этой модели основное внимание переносится на состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии, когда состояние было необычным.

С построением моделей «горячей Вселенной» в космологии наряду с законами тяготения активно применяются законы термодинамики, данные ядерной физики и физики элементарных частиц. Возникает релятивистская астрофизика.

Модель горячей Вселенной получила эмпирическое подтверждение в 1965 году в открытии реликтового излучения американскими учеными Пензиасом и Уилсоном.

Реликтовое излучение — одна из составляющих общего фона космического электромагнитного излучения. Реликтовое излучение равномерно распределено по небесной сфере и по интенсивности соответсвует тепловому излучению абсолютно черного тела при температкур около 3К.

Согласно модели горячей Вселенной, плазма и электромагнитное излучение на ранних стадиях расширения Вселенной обладали высокой плотностью и температурой. В ходе космологического расширения Вселенной эта температура падала. При достижении температуры около 4000 К произошла рекомбинация протонов и электронов, после чего равновесие образовавшегося вещества (водорода и гелия) с излучением нарушилось — кванты излучения уже не обладали необходимой для ионизации вещества энергией и проходили через него как через прозрачную среду. Температура обособившегося излучения продолжала снижаться и к нашей эпохе составила около 3К. Таким образом, это излучение сохранилось до наших дней как реликт от эпохи рекомбинации и образования нейтральных атомов водорода и гелия. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим взрывом.

В основе современной космологии лежат представления об однородности и изотропности Вселенной: во Вселенной нет каких-либо выделенных точек и направлений, т.е. все точки и направления равноправны. Это утверждение об однородности и изотропности Вселенной часто называют космологическим постулатом.

В теории однородной изотропной Вселенной оказываются возможными две модели Вселенной: открытая и замкнутая.

В открытой модели кривизна трехмерного пространства отрицательна или (в пределе) равна нулю, Вселенная бесконечна; в такой модели рассотяния между скоплениями галактик со временем неограниченно возрастают.

В замкнутой модели кривизна пространства положительна, Вселенная конечна (но так же безгранична, как и в открытой модели); в такой модели расширение со временем сменяется сжатием.

На основании имеющихся наблюдательных данных нельзя сделать никакого выбора между открытой и замкнутой моделями. Эта неопределнность никак не сказывается на общем характере прошлого и современного расширения, но влияет на возраст Вселенной (длительность расширения) — величину не достаточно определенную по данным наблюдений.

В моделях однородной изотропной Вселенной выделяется ее особое начальное состояние — сингулярность. Это состояние характеризуется огромной плотностью массы и кривизной пространства. С сингулярности начинается взрывное, замедляющееся со временем расширение.

Значение постоянной Хаббла (вернее, параметра Хаббла) определяет время, истекшее с начала расширения Вселенной, которое сейчас оценивается в 10-20 млрд. лет.

Современная космология рисует картину Вселенной вблизи сингулярности. В условиях очень высокой температуры вблизи сингулярности не могли существовать не только молекулы и атомы, но даже и атомные ядра; существовала лишь равновесная смесь разных элементарных частиц.

Уравнения современной космологии позволяют найти закон расширения однородной и изотропной Вселенной и описать изменение ее физических параметров в процессе расширения.

Из этих уравнений следует, что начальные высокие плотность и температура быстро падали.

Общие законы физики надежно проверены при ядерных плотностях, а такую плотность Вселенная имеет спустя 10-4с от начала расширения. Следовательно, с этого времени от состояния сингулярности физические свойства эволюционирующей Вселенной вполне поддаются изучению (в ряде случаев эту границу отодвигают непосредственно к сингулярности).

В последние десятилетия развитие космологии и физики элементарных частиц позволило теоретически рассмотреть самую начальную сверхплотную стадию расширения Вселенной, которая завершилась уже к моменту t около 10-36 с. Эту стадию расширения Вселенной назвали инфляционной. На этой стадии, когда температура была невероятно высока (больше 1028 К), Вселенная расширялась с ускорением, а энергия в единице объема оставалась постоянной.

До момента рекомбинации, который наступил примерно через миллион лет после начала расширения, Вселенная была непрозрачной для квантов света. Поэтому с помощью электромагнитного излучения нельзя заглянуть в эпоху, предшествующую рекомбинации. На сегодняшний день это можно сделать с помощью теоретических моделей.

Вначале расширения Вселенной ее температура была столь высока, что энергии фотонов хватало для рождения пар всех известных частиц и античастиц. При температуре 1013 К во Вселенной рождались и гибли (аннигилировали) пары различных частиц и их античастиц. При понижении температуры до 5х1012 К почти все протоны и нейтроны аннигилировали, превратившись в кванты излучения; остались только те из них, для которых «не хватило» античастиц. Фотоны, энергия которых к этому времени стала меньше, уже не могли порождать частицы и античастицы. Наблюдения реликтового фона показали, что первоначальный избыток частиц по сравнению с античастицами составлял ничтожную долю (одну миллиардную) от их общего числа. Именно из этих «избыточных» протонов и нейтронов в основном состоит вещество современной наблюдаемой Вселенной.

Читайте также:  Как устроена вселенная ответы

При температуре 2х1010 К с веществом перестали взаимодействовать нейтрино — от этого момента должен был остаться «реликтовый фон нейтрино», обнаружить который, возможно, удастся в будущем.

Спустя несколько секунд после начала расширения Вселенной началась эпоха, когда образовались ядра дейтерия, гелия, лития и бериллия — эпоха первичного нуклеосинтеза. Продолжалась эта эпоха приблизительно 3 минуты. Ее результатом в основном стало образование ядер гелия. Остальные элементы, более тяжелые, чем гелий, составили ничтожно малую часть вещества.

Определение химического состава (особенно содержание гелия, дейтерия и лития) самых старых звезд и межзвездной среды молодых галактик является одним из способов проверки выводов теории горячей Вселенной.

После эпохи нуклеосинтеза (t около 3 мин.) и до эпохи рекомбинации (t около 106 лет) происходило спокойное расширение и остывание Вселенной.

Источник

Реликтовое излучение

Одна из самых интригующих загадок в современной астрофизике — тёмная материя. Она названа так потому, что мы её не видим, но ирония в том, что многое из того, что мы узнали об этой загадочной и неуловимой субстанции, пришло от изучения света, известного нам как космическое микроволновое фоновое излучение или реликтовое излучение.

Доминирующая сегодня Теория Большого взрыва предсказывает, что ранняя Вселенная была крайне жарким местом и что по мере расширения газ внутри неё охлаждается. Если теория верна, вселенная должна быть заполнена остатком первобытного тепла, оставшегося от Большого взрыва. Это тепло и есть то самое реликтовое излучение. А значит, мы сегодня как никогда близко к познанию Mysterium Cosmographicum — всех тайн мироздания.

Что это такое космическое микроволновое фоновое излучение

В официальной науке реликтовое излучение предпочитают называть «космическим микроволновым фоновым излучением» (англ. cosmic microwave background или сокращённо CMB). «Реликтовым излучением» его начали величать с подачи русского астрофизика И. С. Шкловского, который и ввёл в обиход этот термин.

Если говорить простым языком, CMB — это слабое свечение, которое наполняет Вселенную, падая на Землю и другие космические объекты со всех сторон с почти равномерной интенсивностью. Это остаточная теплота творения — послесвечение большого взрыва, которое течёт в пространстве в течение последних

14 миллиардов лет, подобно теплу от нагретого камина, огонь, который уже погас.

Реликтовое излучение — это по сути электромагнитные волны, которые разошлись по ткани пространства-времени в самую раннюю космологическую эпоху, и пронизывают весь мир. Считается, что оно образовалось примерно через 380 000 лет после Большого взрыва и несёт информацию о том, как образовались первые звёзды и галактики. Хотя это излучение невидимо с помощью оптических телескопов, радиотелескопы улавливают слабый сигнал (или фон), который является самым сильным в микроволновой области радиоспектра.

Карта (панорама) анизотропии реликтового излучения (горизонтальная полоса — засветка от галактики Млечный Путь). Красные цвета означают более горячие области, а синие цвета — более холодные области. По данным спутника WMAP

Свойства реликтового излучения

Мы неспособны наблюдать за реликтовое излучение невооружённым глазом. Оно невидимо для человека, потому что излучается только в микроволновой части электромагнитного спектра. Сегодня реликтовое излучение очень холодное, всего на 2,725° выше абсолютного нуля. При такой температуре основной спектр приходится на радиоволны сантиметрового и миллиметрового диапазонов. Плотность энергии реликтового излучения — 0,25 эВ/см3. Тем не менее, оно заполняет всё пространство и присутствует везде. Фактически, если бы наши сенсорные органы были способны видеть микроволны, все небо для нас сияло удивительным мягким светом, равномерным во всех направлениях.

Эта однородность — одна из основных причин, позволяющих интерпретировать реликтовое излучение как остаточное тепло Большого взрыва. Было бы очень трудно представить другой источник излучения, способный таким ровным фоном заполонить весь видимый космос. Многие учёные пытались придумать альтернативные объяснения источника этого света, но ни одно из них пока не является настолько убедительным, чтобы оспорить основную теорию.

Реликтовое изучение обладает одинаковой температурой с небольшими колебаниями, видимыми с помощью точных телескопов. Изучая эти колебания, космологи всё больше узнают о происхождении галактик и крупномасштабных галактических структурах, а также получают всё более точную картину сотворения мира, в рамках теории Большого взрыва.

Читайте также:  Звезда старше возраста вселенной

Зачем изучать реликтовое излучение

Важно понимать, что реликтовое излучение — это одна из фундаментальных опор современной космологии. Поскольку свет распространяется с конечной скоростью, астрономы, наблюдающие за далёкими объектами, фактически заглядывают в прошлое. Большинство звёзд, которые видны невооружённым глазом на ночном небе, находятся на расстоянии от 10 до 100 световых лет. Таким образом, мы видим их такими, какими они были 10–100 лет назад. Мы наблюдаем Андромеду, ближайшую большую галактику, но видим её такой, какой она была около 2,5 миллионов лет назад. Астрономы, наблюдающие за далёкими галактиками с помощью космического телескопа Хаббла, видят их такими, какими они были всего через несколько миллиардов лет после Большого взрыва.

Реликтовое излучение было испущено

13,7 миллиардов лет назад, всего через несколько сотен тысяч лет после Большого взрыва, задолго до того, как образовались первые звёзды или галактики. Таким образом, изучая физические свойства излучения, мы можем пройти назад во времени почти к самому моменту зарождения Вселенной и что важнее, наблюдать физические механизмы, стоящие за этим процессом.

Предпосылки открытия

История CMB начинается с Эдвина Хаббла, который сделал одно из самых потрясающих открытий 20-го века. В 1929 году он обнаружил, что вселенная расширяется. Сделав вывод, что «спиральные туманности» — это «островные вселенные», а не часть Млечного Пути, Хаббл измерил расстояния до звёзд Цефеиды и доказал, что звёздные объекты существуют и за пределами Солнечной системы. За этим последовало следующее открытие — все галактики, которые наблюдал Хаббл, удалялись от нас, а самые дальние галактики удалялись быстрее всего.

Его изначальные расчёты оказались с погрешностями, но сама концепция оказалась верной — он научно обосновал, что вселенная имеет не статическую, а динамическую природу, и у неё есть начало. Открытие Хаббла пришлось на то время, когда велась бурная работа по моделированию вселенной с использованием недавно разработанной Эйнштейном общей теории относительности.

Любопытно, что сам Эйнштейн сначала был приверженцем статической, а не динамической модели вселенной. Тем не менее, Жорж Леметр, бельгийский учёный и католический священник, доказал, что расширяющаяся вселенная вполне себе вписывается в уравнения Эйнштейна. Вдохновленный этим открытием, Леметр предположил, что Вселенная, началась с распада «первобытного атома». По его мнению, космические остатки этого атома образовали семена звёзд, галактик и других космических структур, которые мы видим сегодня. Но Леметр считал это холодным процессом. Но фундамент уже был заложен, а до открытия теории «горячей вселенной» остаётся ещё несколько десятилетий.

Теория происхождение космического микроволнового фона

Вдохновившись трудами Хаббла и Леметра, украинско-американский физик Георгий Гамов вместе со своими учениками и коллегами Ральфом Альфером и Робертом Германом в 1948 году разработали свою теорию. Она была основана на их исследованиях гипотетического протекания нуклеосинтеза лёгких элементов (водород, литий и гелий) в условиях очень ранней Вселенной. По сути, они поняли, что для синтеза ядер этих элементов ранняя Вселенная должна была быть не холодной, а наоборот, чрезвычайно горячей.

В известной статье, опубликованной в 1948 году, Ральф Альфер и Георгий Гамов предложили свою модель расширяющейся вселенной. Они утверждали, что ранняя вселенная была горячей и плотной и расширялась от изначально сверхплотного состояния. Учёные успешно рассчитали содержание водорода и гелия, но всё же допустили ошибку. Они считали, что тяжёлые элементы зарождались путём объединения нейтронов. Теперь же мы понимаем, что все элементы тяжелее лития создаются в ядрах звёзд.

Но это уже детали. Основополагающая суть оказалась верна — Вселенная рождена из большого взрыва бесконечно плотной и горячей сингулярности. А из-за её расширения, отголосок этого события должен сохраниться в виде фонового микроволнового излучения с низкой температурой, близкой к абсолютному нулю. Но это сегодня теория считается доминирующей и в ней почти нет сомнений. Тогда она была свежей гипотезой, которая нуждалась в физических доказательствах. И вскоре они появились.

Практика открытия

К началу 1960-х годов космология стала полем битвы двух конкурирующих теорий — большого взрыва и статической (стационарной) вселенной. У модели большого взрыва тогда была проблема — слишком молодой возраст вселенной (около двух миллиардов лет). Эта возрастная проблема делала очень сильными позиции учёных вроде Фреда Хойла, Германа Бонди и Томаса Голда, предлагающих теорию стационарного состояния, которая частично объясняла расширение Хаббла и предлагала новую физику статической вселенной, которая непрерывно создаёт новую материю.

Две теории, большого взрыва и статического состояния дали совершенно разные космологические концепции. В некотором смысле, «стационарная» модель была математически проще; она имела меньше сложных переменных параметров и позволяла делать более конкретные прогнозы.

Читайте также:  Как ученые определили возраст вселенной

Но в 1964 году астрономы Арно Пензиас и Роберт Уилсон поставили жирный крест на всех распрях и дали миру железобетонные доказательства модели большого взрыва. Пытаясь откалибровать радиоантенну в Bell Labs, разработанную для обнаружения радиоволн от спутников, они заметили избыточный равномерный шум в небе, в 100 раз превышающий любой ожидаемый ими фон.

Сначала этот факт их сильно расстроил. Учёные посчитали, что тут одно из двух — либо антенна сконструирована неправильно, либо эфир засоряет «шум» с Земли. Они пошли на крайние меры, перебрав конструкцию с нуля и даже удалив всю пыль, мелкий сор и птичий помет из антенны, чтобы избавиться от этого фона. После кропотливой работы они обнаружили, что фон не исчезает. И его источник, не спутники, не Солнце и даже не наша собственная галактика. Он был внегалактическим и всеобъемлющем по своей природе, а его источник оставался загадочным.

В поисках объяснения, они наткнулись на работу астрономов Принстонского университета, которые искали реликтовое излучение в рамках изучения теории Большого Взрыва. Пензиас и Уилсон поняли, что обнаружили именно его. Обе группы опубликовали совместные статьи в «Астрофизическом журнале», описывающие открытие и интерпретирующие его как давно предсказанное космическое микроволновое фоновое излучение. За своё открытие Пензиас и Уилсон были удостоены Нобелевской премии по физике в 1978 году.

Первоначально обнаружение CMB стало источником раздора между сторонниками различных космологических теорий. Сторонники теории большого взрыва утверждали, что это было «реликтовое излучение», оставшееся от Большого взрыва, а сторонники теории статического состояния не сдавались и утверждали, что это лишь «звёздный свет от далёких галактик». Однако к 1970-м годам научный мир окончательно пришёл к консенсусу, приняв модель Большого взрыва в качестве основной.

Будущее реликтового излучения

Согласно различным космологическим теориям, Вселенная может в какой-то момент перестать расширяться и начать движение в обратном направлении, завершаясь коллапсом, за которым следует ещё один Большой взрыв. Так гласит так называемая теория Большого сжатия. В другом сценарии, известном как Большой Разрыв, расширение Вселенной в конечном итоге приведёт к разрыву всей материи и разрушению ткани пространства-времени.

Если ни один из этих сценариев не окажется правильным, и Вселенная продолжит расширяться с ускоряющейся скоростью, реликтовое излучение продолжит красное смещение до точки, где оно станет необнаружимым. В этот момент его окончательно перекроет свет первых звёзд, а затем фоновые радиационные поля, созданные другими процессами, которые произойдут в будущем. А сама Вселенная вскоре в конце концов придёт в состояние термодинамического равновесия, или так называемой «тепловой смерти». Но это не точно, ведь если с прошлым всё более или менее ясно, то будущее — непаханая нива для разного рода теорий и гипотез.

Постскриптум

Реликтовое излучение — это самый старый свет, который мы можем видеть. Самый дальний во времени и пространстве. Этот свет отправился в путешествие 14 миллиардов лет назад, задолго до того, как появилась Земля, наша Галактика и даже до рождения первых звёзд. Это период младенчества Вселенной, время, когда это было не холодное тёмное место, как сейчас, а огненный океан радиации и элементарных частиц.

На протяжении тысячелетий человек созерцал окружающий мир и стремился познать его истинную суть. Древние философы считали, что Земля — это диск, зиккурат или куб, окружённые небесными океанами или каким-то загадочным эфиром. Были и более экзотические тории, но развитие современной астрономии открыло глаза на реальное положение вещей. Правда, загадок от этого стало только больше.

К 20-му веку учёные начали понимать, насколько огромна (и, возможно, даже бесконечна) Вселенная на самом деле. И в процессе изучения космоса, учёные обнаружили действительно удивительные вещи. Например, в 1960-х астрономам стало известно о микроволновом фоновом излучении, которое можно пронизывает всё космическое пространство и даёт нам возможность путешествовать во времени и созерцать Вселенную такой, какой она была в самом начале.

Реликтовое излучение полезно для учёных, потому что оно помогает нам узнать, как была сформирована ранняя Вселенная. Его изучение не просто даёт общую картину, а демонстрирует конкретные физические законы, которые стояли за процессами мироздания. И изучая его, человечество заглядывает в прошлое и развивает туман над будущим, получая знание о том, какое будущее ждёт наш общий дом миллиарды лет спустя.

Источник

Adblock
detector