Меню

Модель холодной вселенной зельдовича

Модель «Холодной вселенной»

Столкнувшись с некоторыми нерешаемыми вопросами моделью «горячей вселенной» ученые стали искать иные физические модели «начала». В 1961 году академик Я.Б. Зельдович выдвинул альтернативную холодную модель Вселенной, согласно которой первоначальная плазма состояла из смеси холодных (с температурой ниже абсолютного нуля) вырожденных частиц — протонов, электронов и нейтрино.

Три года спустя астрофизики И.Д. Новиков и А.Г. Дорошкевич произвели сравнительный анализ двух противоположных моделей космологических начальных условий — горячей и холодной и указали путь опытной проверки и выбора одной из них. Было предложено с помощью изучения спектра излучений звезд и космических радиоисточников попытаться обнаружить остатки первичного излучения. Открытие остатков первичного излучения подтверждало бы правильность горячей модели, а если таковые не существуют, то это будет свидетельствовать в пользу холодной модели.

В конце 60-х годов группа американских ученых во главе с Робертом Дикке приступила к попыткам обнаружить реликтовое излучение. Но их опередили Л. Пепзиас и Р. Вильсон, получившие в 1978 г. Нобелевскую премию за открытие микроволнового фона (это официальное название реликтового излучения) на волне 7,35 см.

Примечательно, что будущие лауреаты Нобелевском премии не искали реликтовое излучение, а в основном занимались отладкой радиоантенны, для работы по программе спутниковой связи. С июля 1964 г. по апрель 1965 г они при различных положениях антенны регистрировали космическое излучение, природа которого первоначально была им не ясна. Этим излучением и оказалось реликтовое излучение.

Таким образом, в результате астрономических наблюдений последнего времени удалось однозначно решить принципиальный вопрос о характере физических условий, господствовавших на ранних стадиях космической эволюции: наиболее адекватной оказалась «горячая модель Вселенной» и его теория Большого взрыва. Однако, не означает, что подтвердились все теоретические утверждения и выводы космологической концепции Гамова.

Читать онлайн

книги о тайнах и загадках истории, а также о необъяснимых явлениях на нашем сайте

Источник

Открытие красного смещения Э. Хаббла

На этот вывод не было обращено внимания вплоть до открытия американским астрономом Эдвином Хабблом в 1929 году так называемого «красного смещения». Красное смещение — это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая вами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т. е. линии спектра сдвигаются в сторону более длинных красных волн.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждает гипотезу об удалении их, т. е. о расширении Метагалактики — видимой части Вселенной.

Концепция «Большого взрыва»

Составной частью модели расширяющейся Вселенной является представление о Большом Взрыве, происшедшем где-то примерно 12 — 18 млрд. лет назад.

Джордж Лемер был первым, кто выдвинул концепцию «Большого взрыва» из так называемого «первобытного атома» и последующего превращения его осколков в звезды и галактики. Конечно, со стороны современного астрофизического знания данная концепция представляет лишь исторический интерес, но сама идея первоначального взрывоопасного движения космической материи и ее последующего эволюционного развития неотъемлемой частью вошла в современную научную картину мира.

Модель «Горячей вселенной»

Принципиально новый этап в развитии современной эволюционной космологии связан с именем американского физика Г.А. Гамова (1904-1968), благодаря которому в науку вошло понятие горячей Вселенной. Согласно предложенной им модели «начала» эволюционирующей Вселенной «первоатом» Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины — один кубический сантиметр первичного вещества весил миллиард тонн. В результате взрыва этого «первоатома» по мнению Г.А.Гамова образовался своеобразный космологический котел с температурой порядка трех миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки первичного яйца — отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после Большого Взрыва.

Горячая модель представляла собой конкретную астрофизическую гипотезу, указывающую пути опытной проверки своих следствий. Гамов предсказал существование в настоящее время остатков теплового излучения первичной горячей плазмы, а его сотрудник Герман еще в 1948 г. довольно точно рассчитал величину температуры этого остаточного излучения уже современной Вселенной. Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распространенности тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов.

Читайте также:  Душа прикоснется великой вселенной по имени русь

Модель «Холодной вселенной»

Ученые стали искать иные физические модели «начала». В 1961 году академик Я.Б. Зельдович выдвинул альтернативную холодную модель, согласно которой первоначальная плазма состояла из смеси холодных (с температурой ниже абсолютного нуля) вырожденных частиц — протонов, электронов и нейтрино. Три года спустя астрофизики И.Д. Новиков и А.Г. Дорошкевич произвели сравнительный анализ двух противоположных моделей космологических начальных условий — горячей и холодной и указали путь опытной проверки и выбора одной из них. Было предложено с помощью изучения спектра излучений звезд и космических радиоисточников попытаться обнаружить остатки первичного излучения. Открытие остатков первичного излучения подтверждало бы правильность горячей модели, а если таковые не существуют, то это будет свидетельствовать в пользу холодной модели.

Источник

Модель холодной Вселенной

Из Википедии — свободной энциклопедии

Холодная начальная Вселенная — гипотеза о том, что первичное вещество Вселенной на начальной стадии её эволюции состояло из холодных нейтронов и имело нулевую энтропию ( S = 0 <\displaystyle S=0> ) и нулевой лептонный заряд ( L = 0 <\displaystyle L=0> ).

Гипотеза возникла в 1930-е годы при отсутствии конкретной теории сверхплотного состояния, позволяющей определить ядерные реакции при таких условиях. Позже выяснилось, что такой вариант начального состава вещества приводит к противоречию с наблюдениями. Дело в том, что в ходе расширения Вселенной нейтроны будут претерпевать бета-распад на протоны, электроны и антинейтрино. Образующийся протон будет соединяться с нейтроном, образуя дейтрон. Реакции усложнения атомных ядер будут продолжаться до тех пор, пока не образуется альфа-частица — ядро атома гелия. Вследствие этого всё вещество превратится в гелий. Этот вывод резко противоречит наблюдениям. Известно, что звёзды и межзвёздный газ состоят в основном из водорода, а не из гелия. Таким образом, наблюдения отвергают холодную нейтронную гипотезу первичного вещества.

В 1947 году Г. А. Гамовым была создана модель горячей Вселенной, которая на ранних этапах была заполнена большим количеством фотонов и, таким образом, имела высокую энтропию. В рамках этой модели удалось построить успешную модель первичного нуклеосинтеза, позволяющую теоретически получить среднюю распространённость химических элементов во Вселенной, согласующуюся с наблюдениями. Эта модель также предсказывала существование реликтового излучения с температурой в несколько кельвинов, которое было экспериментально открыто в 1965 году. Данное открытие окончательно убедило космологов в верности горячей модели.

Источник

Как была создана Вселенная. Часть 2: современность.

Игнат Вершинин 4 мая 2017 0

Подписывайтесь на наш телеграм-канал. Мы публикуем там свежие новости и лучшие фотографии.

С первой частью статьи вы можете ознакомиться здесь!

Научные методы в изучении Вселенной привели к формованию четких и основанных на фактах концепций ее возникновения, однако не все с ними согласились.

Две мировые войны не только принесли горе и смерть, но и способствовали резкому развитию технологий и научного знания, что, в свою очередь, позволило ученым глубже заглянуть в ящик Пандоры в поисках ответа на интересующие их вопросы. За этим последовал настоящий бум теорий, предположений и мнений о возникновении Вселенной, но придут ли они когда-нибудь к общему знаменателю?

Современные научные теории

На сегодняшний день за основу в изучении Вселенной большинством научного сообщества берется теория Большого взрыва (и нет, это мы не про сериал), но она далеко не совершенна.

Начало современным теориям о возникновении и формировании Вселенной положил один из крупнейших ученых XX в. — Альберт Эйнштейн. В рамках общеизвестной теории относительности он работал над так называемыми уравнениями. Объединенные в одну систему, они представляли собой описание фундаментального космического явления — гравитации. Однако в модели Вселенной, которую создал Эйнштейн, была допущена ошибка. Он ввел в уравнение космологическую постоянную, представленную в виде греческой буквы лямбда (Λ). Здесь в первоначальные представления великого ученого о Вселенной закралась ошибка: он предполагал стационарность Вселенной. В дальнейшем Эйнштейн изменил свою точку зрения, но лямбда так и осталась в уравнении как необязательная величина, напоминая о том, что даже крупнейшие умы человечества зависимы от развития технологий.

Читайте также:  Граница вселенной что дальше

Альберт Эйнштейн. janeb13 / pixabay.com (CC0 1.0)

Черепаха и стоящие на ней слоны ушли в прошлое — наука шагала вперед семимильными шагами. Как утверждал русский ученый Вернадский в начале XX в., есть один элемент, который никогда не учитывают при исследовании вселенной, — ноосфера. Она, в представлении ученого, представляет собой разум человечества в его совокупности. Научная жизнь на протяжении истории своего существования стирала границы, сливаясь в один организм: теории, взгляды и мнения ученых со всего мира публиковались на страницах международных журналов. В одном из них в 1922 г. была опубликована работа советского математика Александра Фридмана, в которой он заложил основы для теорий о нестационарных моделях Вселенной. Ученый отверг идею конечности космического пространства и столкнулся с критикой со стороны Эйнштейна, однако ценность научного знания возобладала, и концепция Фридмана была взята за истинную на данном этапе. Впоследствии она была подтверждена обнаружением красного смещения (понижение частот излучения, вызванное удалением его источников) Эдвином Хабблом.

Сотню лет спустя работы обоих ученых легли в основу современной космологической модели ΛCDM, где лямбда является переменной для открытой не так давно темной материи.

Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Дизайн: Alex Mittelmann, Coldcreation / wikimedia.org (CC BY-SA 3.0)

Следующим шагом в формировании теории Большого взрыва стало развитие науки после Второй мировой войны. Советский ученый Георгий Антонович Гамов, вынужденный эмигрировать в США в связи с непониманием его позиции на родине и конфликтом с ученым сообществом Академии наук (был исключен в 1938 г.), предложил теорию горячей вселенной. По его мнению, зарождение Вселенной началось с «горячего» состояния, подтверждением которого должно было стать на тот момент теоретическое микроволновое (реликтовое) излучение — тепловые отголоски Большого взрыва, все еще доносящиеся до нас. Теория Гамова родилась в 1946 г., представлена в 1948-м, но подтверждение нашла только к 1965 г. Неудивительно, что она столкнулась с критикой, однако именно ее отсутствие могло привести к худшему для ученого раскладу — забвению. Для научных концепций жизненно необходимым может являться не только признание, но разгоревшиеся на их фоне споры. Стоит отметить, что Гамов активно занимался популяризацией науки и писал свои работы доступным языком, стараясь привлечь внимание людей к бескрайней темной Вселенной.

Теории стационарной Вселенной

В ответ на возникшую теорию раздались громогласные возгласы с трибун британского астронома Фреда Хойла, который наряду со своими коллегами придерживался теории стационарной Вселенной. Согласно ее основам, не существует единой точки образования или «взрыва», а расширение Вселенной происходит в результате образования материи между галактиками. Наука тоже умеет шутить: презентуя свою концепцию в 1949 г., Хойл, пытаясь придумать презрительное название для теории своих оппонентов, фактически создал столь запоминающееся словосочетание — «Большой взрыв».

Как уже было сказано выше, в 1965 г. теория обрела вторую составляющую доказательства своей приемлемости (первой было красное смещение) после того, как было подтверждено существование реликтового излучения.

Казалось бы, что теперь теория Большого взрыва должна была стать доминирующей среди научного сообщества, однако всё обернулось иначе.

Теория холодной Вселенной

Предложенная советскими учеными Андреем Сахаровым и Яковов Зельдовичем теория холодной Вселенной, не смогла противостоять «горячей теории», но не все законы, лежащие в ее основе, потеряли свое значение. В теории Большого взрыва имеются лакуны, например относительно состояния Вселенной в начальный момент взрыва (космологическая сингулярность), которые может заполнить и ее «холодный собрат».

Попытки заполнить остальные лакуны и разобрать по частям каждый элемент реальности привели к появлению теории струн. Ее основная идея заключается в том, что мельчайшая фундаментальная частица, кварк, состоит из энергетических структур, вибрирующих, словно струна. Несмотря на то что теория струн основана на теории Большого взрыва, она породила немало новых взглядов на реальность. Ведь не был дан ответ на самый важный вопрос: как так получилось, что в нашей Вселенной зародилась жизнь?

Читайте также:  Как работать со вселенной запросы правильные

Например, некоторые ученые считают, что наш мир не единственный, а один из множества частей мультивселенной. Данная теория предполагает, что мы видим лишь одну часть реальности, тогда как остальные элементы многомерного пространства скрыты от зорких глаз ученых. Также, согласно гипотезе мультивселенной, каждая вселенная обладает своим набором констант, физических величин и характеристик, сочетание которых вполне могло привести к возникновению жизни в одной из них — нашей.

Теории создают новые теории

Бесконечное почкование ученой мысли не остановить. Возникновение жизни, основанное на гипотезах мультивселенной и теории струн, наводит на мысль о том, что кто-то до мельчайшей детали подгадал необходимые условия, так сказать, произвел «тонкую настройку Вселенной».

Помимо теории мультивселенной, на основе «настройки» зародились два специфичных взгляда о возникновении Вселенной.

Первый из них возвращает нас в далекое прошлое. По утверждению ряда ученых, которые не пользуются особой популярностью в научном сообществе, Вселенная была создана разумным творцом: Богом, Дьяволом, Буддой или просто программистом-Васей, не так важно. Этот взгляд получил название «разумный замысел» и отметку «псевдонаучный».

Марк Тегмарк. Источник: Wikimedia.org

Вторая гипотеза разработана относительно молодым (48 лет) ученым Максом Тегмарком. Получив ученую степень доктора философии, он посвятил свою жизнь космологии и вывел теорию математической вселенной. Согласно ей вся реальность является математической структурой. Взгляд довольно специфичный, но оспорить его так же сложно, как доказать, что Бога нет. Тегмарк включил свою гипотезу в Теорию всего, которую также нельзя ни доказать, ни опровергнуть на современном этапе развития научного знания. Попытка объединить все законы в один-единственный натолкнулась на острую «бритву Оккама» (принцип не делать из мухи слона, когда для этого нет необходимости). Пока сложно сказать, кто выйдет победителем из этой философской баталии.

Помимо теологов, которые адаптируются к научно-техническому прогрессу и выводят новые теории креационизма (создание всего сущего Богом/Творцом), и философов, пытающихся вернуть «царице всех наук» ее былые лавры, в разработке концепций создания Вселенной участвуют и представители массовой культуры: сценаристы, писатели, режиссеры. За примером далеко идти не нужно — знаменитый фильм-антиутопия «Матрица» братьев (трансгендерных сестер) Вачовски. Однако теория о том, что весь наш мир является компьютерной программой, активно обсуждается крупнейшими деятелями науки.

Нил Деграсс Тайсон, великолепный астрофизик и популяризатор науки, провел дебаты под названием «Является ли Вселенная компьютерной симуляцией?», куда были приглашены космологи, физики-теоретики и философы. Целью встречи было обсуждение аргументов «за» и «против» гипотезы симуляции Ника Бострома, которую тот представил в 2003 г. На данный момент гипотеза до сих пор не обзавелась прочной доказательственной базой.

Как считает наш эксперт, подобное разнообразие теорий вполне соответствует своему времени.

Экспертное мнение

Антон Иванович Первушин, член союза ученых Санкт-Петербурга, Федерации космонавтики России, Ассоциации футурологов, специалист по истории науки и космонавтике

«Лично я придерживаюсь стандартной теории, основанной на Большом взрыве и множественности миров, то есть М-теории. Она была создана с целью объединения фундаментальных законов, но, как и любая другая теория, не является исчерпывающей. Даже буква “М” в названии имеет несколько разных трактовок.

Существующее многообразие концепций стало возможным в связи с недостаточным развитием технологий, приборов, что не позволяет с точностью определить реальное положение вещей. Однако с их развитием менее научные теории, например креационизм, уйдут в прошлое.

Ни одна теория на данный момент не способна объединить все физические законы, условия, параметры. Несмотря на существование Теории всего, она является больше философской, чем научной. Поэтому, как мне кажется, вопрос об универсальном теоретическом объяснении возникновения Вселенной и ее функционирования не может быть решен».

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Adblock
detector