Темная материя и темная энергия
Объекты глубокого космоса > Темная материя и темная энергия
Около 80% пространства представлено материалом, который скрыт от прямого наблюдения. Речь идет о темной материи – вещество, которое не производит энергию и свет. Как же исследователи поняли, что оно доминирует?
В 1950-х годах ученые начали активно заниматься изучением других галактик. В ходе анализов заметили, что Вселенная наполнена большим количеством материала, чем удается уловить на «видимый глаз». Сторонники темной материи появлялись каждый день. Хотя прямых доказательств ее наличия не было, но теории росли, как и обходные пути наблюдения.
Видимый нами материал называют барионной материей. Она представлена протонами, нейтронами и электронами. Полагают, что темная материя способна совмещать в себе барионную и небарионную материю. Чтобы Вселенная оставалась в привычной целостности, темная материя обязана находиться в количестве 80%.
Неуловимое вещество может быть невероятно сложным для поисков, если вмещает барионное вещество. Среди претендентов называют коричневых и белых карликов, а также нейтронные звезды. Разницу могут прибавлять и сверхмассивные черные дыры. Но они должны были вносить больше влияния чем то, что видели ученые. Есть и те, кто думает, что темная материя должна состоять из чего-то более непривычного и редкого.
Комбинированное изображение телескопа Хаббл, отображающее призрачное кольцо темной материи в скоплении галактик Cl 0024+17
Большая часть научного мира полагает, что неизвестное вещество представлено в основном небарионной материей. Наиболее популярный кандидат – WIMPS (слабо контактирующие массивные частицы), чья масса в 10-100 раз превосходит показатели протона. Но их взаимодействие с обычной материей слишком слабое, из-за чего сложнее находить.
Сейчас очень внимательно рассматривают и нейтралино – массивные гипотетические частички, превосходящие по массе нейтрино, но отличаются медлительностью. Их пока не нашли. В качестве возможных вариантов также учитывают меньшую нейтральную аксиому и нетронутые фотоны.
Еще один вариант – устаревшие знания о гравитации, которые требуют обновления.
Невидимая темная материя и темная энергия
Но, если мы чего-то не видим, как доказать, что оно существует? И с чего мы решили, что темная материя и темная энергия — это нечто реальное?
Масса крупных объектов вычисляется по их пространственному перемещению. В 50-х годах исследователи, рассматривавшие галактики спирального типа, предполагали, что приближенный к центру материал будет двигаться намного быстрее удаленного. Но выяснилось, что звезды перемещались с одинаковой скоростью, а значит, было намного больше массы, чем думали ранее. Изученный газ в эллиптических типах показал те же результаты. Напрашивался один и тот же вывод: если ориентироваться только на видимую массу, то галактические скопления давно бы разрушились.
Модель распределения темной материи во Вселенной 13.6 миллиардов лет назад.
Альберт Эйнштейн смог доказать, что крупные вселенские объекты способны изгибать и искажать световые лучи. Это позволило использовать их как естественную увеличительную линзу. Исследуя этот процесс, ученым удалось создать карту темной материи.
Получается, что большая часть нашего мира представлена все еще неуловимым веществом. Вы узнаете больше интересного о темной материи, если посмотрите видео.
Если говорить о материи, то темная безусловно лидирует по процентному соотношению. Но в целом она занимает лишь четверть всего. Вселенная же изобилует темной энергией.
С момента Большого Взрыва пространство запустило процесс расширения, что продолжается и сегодня. Исследователи полагали, что в итоге начальная энергия закончится и она замедлит свой ход. Но далекие сверхновые демонстрируют, что пространство не останавливается, а набирает скорость. Все это возможно только в том случае, если количество энергии настолько огромное, что преодолевает гравитационное влияние.
Разъяснение загадки
Мы знаем, что Вселенная, по большей части, представлена темной энергией. Это загадочная сила, которая приводит к тому, что пространство увеличивает скорость расширения Вселенной. Еще одним таинственным компонентом выступает темная материя, поддерживающая контакт с объектами только при помощи гравитации.
Ученые не могут разглядеть темную материю в прямом наблюдении, но эффекты доступны для изучения. Им удается уловить свет, изогнутый гравитационной силой невидимых объектов (гравитационное линзирование). Также замечают моменты, когда звезда совершает обороты вокруг галактики намного быстрее, чем должна.
Все это объясняется наличием огромного количества неуловимого вещества, воздействующего на массу и скорость. На самом деле, это вещество покрыто тайнами. Получается, что исследователи скорее могут сказать не, что перед ними, а чем «оно» не является.
На этом коллаже показаны изображения шести разных галактических скоплений, сделанные при помощи космического телескопа НАСА Хаббл. Кластеры были обнаружены во время попыток исследовать поведение темной материи в галактических скоплениях при их столкновении
Темная материя… темная. Она не производит свет и не наблюдается в прямой обзор. Следовательно, исключаем звезды и планеты.
Она не выступает облаком обычной материи (такие частички называют барионами). Если бы барионы присутствовали в темной материи, то она проявилась бы в прямом наблюдении.
Исключаем также черные дыры, потому что они выступают гравитационными линзами, излучающими свет. Ученые не наблюдают достаточного количества событий линзирования, чтобы вычислить объем темной материи, которая должна присутствовать.
Хотя Вселенная – огромнейшее место, но началось все с наименьших структур. Полагают, что темная материя приступила к конденсации, чтобы создать «строительные блоки» с нормальной материей, произведя первые галактики и скопления.
Чтобы отыскать темную материю, ученые применяют различные методы:
- Большой адронный коллайдер.
- инструменты, вроде WNAP и космическая обсерватория Планка.
- эксперименты прямого обзора: ArDM, CDMS, Zeplin, XENON, WARP и ArDM.
- косвенное обнаружение: детекторы гамма-лучей (Ферми), нейтринные телескопы (IceCube), детекторы антивещества (PAMELA), рентгеновские и радиодатчики.
Углубляемся в тайну
Еще ни раз ученые не смогли в буквальном смысле увидеть темную материю, потому что она не контактирует с барионной, а значит, остается неуловимой для света и прочих разновидностей электромагнитного излучения. Но исследователи уверены в ее присутствии, так как наблюдают за воздействием на галактики и скопления.
Стандартная физика говорит, что звезды, расположенные на краях галактики спирального типа, должны замедлять скорость. Но выходит так, что появляются звезды, чья скорость не подчиняется принципу расположения по отношению к центру. Это можно объяснить лишь тем, что звезды ощущают влияние от невидимой темной материи в ореоле вокруг галактики.
Наличие темной материи также способно расшифровать некоторые иллюзии, наблюдаемые во вселенских глубинах. Например, присутствие в галактиках странных колец и световых дуг. То есть, свет от отдаленных галактик проходит сквозь искажение и усиливается невидимым слоем темной материи (гравитационное линзирование).
Пока у нас есть несколько идей о том, что собою представляет темная материя. Главная мысль – это экзотические частицы, не контактирующие с обычной материей и светом, но имеющие власть в гравитационном смысле. Сейчас несколько групп (одни используют Большой адронный коллайдер) работают над созданием частиц темной материи, чтобы изучить их в лабораторных условиях.
Другие думают, что влияние можно объяснить фундаментальной модификацией гравитационной теории. Тогда получаем несколько форм гравитации, что существенно отличается от привычной картины и установленных физикой законов.
Расширяющаяся Вселенная и темная энергия
Ситуация с темной энергией еще более запутанная и само открытие в 1990-х годах стало непредсказуемым. Физики всегда думали, что сила притяжения работает на замедление и однажды может приостановить процесс вселенского расширения. За измерение скорости взялось сразу две команды и обе, к своему удивлению, выявили ускорение. Это словно вы подбрасываете яблоко в воздух и знаете, что оно обязано упасть вниз, а оно удаляется от вас все дальше.
Стало ясно, что на ускорение влияет некая сила. Более того, кажется, чем шире Вселенная, тем больше «власти» получает эта сила. Ученые решили обозначить ее темной энергией.
Если темную материю можно хоть как-то объяснить, то по поводу темной энергии нет вообще ничего. Некоторые правда полагают, что это пятая фундаментальная сила – квинтэссенция.
Однако, известные свойства темной энергии согласуются с космологической константой, созданной Альбертом Эйнштейном в общей теории относительности. Константа выступает отталкивающей силой, противодействующей гравитации и удерживающей пространство от разрушения. Позже Эйнштейн отказался от нее, потому что наблюдения выявили процесс расширения Вселенной (она рассчитывалась для статичной).
Но, если сейчас добавить темную энергию в качестве константы для ускорения расширения Вселенной, то может объяснить этот процесс. Но все это так и не дает понимания того, почему эта странная сила вообще существует.
Источник
Темная материя: что это такое, как мы узнаем, что она есть, и найдем ли мы ее?
Смоделированный вид распределения темной материи в нашей Вселенной
Это звучит как научная фантастика, чтобы сказать, что есть невидимые, необнаружимые вещи вокруг нас, и что у него есть жуткое название темной материи. Но есть много доказательств того, что этот материал очень реален. Так что же такое темная материя? Откуда мы знаем, что оно там? И как ученые его ищут?
Все, что мы видим вокруг – от растений до планет, от камней до звезд, от людей до скопления галактик Персея – состоит из материи. Но все это составляет лишь около 15 процентов от общего количества материи во Вселенной. Подавляющее большинство, то есть оставшиеся 85 процентов, не учитываются – и мы называем это темной материей.
Это название не описывает, как выглядит эта странная вещь — оно получает такое название, потому что не поглощает, не отражает и не преломляет свет, делая его фактически невидимым. И нет ничего, что могло бы объяснить это в Стандартной модели физики элементарных частиц, которая остается нашей лучшей теорией о Вселенной.
Во всем мире предпринимаются огромные усилия, чтобы попытаться раскрыть, что же на самом деле представляет собой темная материя, но возникает естественный вопрос: если мы не можем ее увидеть, почувствовать, услышать, понюхать или попробовать на вкус, как мы узнаем, что она вообще существует?
Откуда мы знаем, что темная материя существует?
Считается, что темная материя пронизывает вселенную — так почему же мы ее еще не нашли? И откуда мы вообще знаем, что она там?
Все, что имеет массу, имеет гравитационное притяжение, и чем больше массы что-то имеет, тем сильнее становится эта сила. Но астрономы постоянно видят, что крупномасштабные объекты, такие как галактики и скопления, ведут себя так, как будто они имеют гораздо большую массу, чем то, что видно.
Швейцарский астрофизик Фриц Цвикки был первым, кто предложил идею темной материи в 1933 году. Он изучал скопление галактик и обнаружил несоответствие: похоже, что их массы не хватает, чтобы объяснить, как быстро движутся эти галактики.
Открытие Цвики было только первым примером явно пропавшей массы. В конце 1970-х астрономы Вера Рубин и Кент Форд наблюдали за нашей соседней галактикой, Андромедой. Дуэт ожидал увидеть объекты на окраинах галактики, вращающиеся медленнее, чем те, что ближе к центру, но это было не так: вместо этого относительные скорости имели тенденцию выравниваться, а объекты на окраинах вращались гораздо быстрее, чем должна была позволить видимая масса.
Еще одним убедительным доказательством является гравитационное линзирование. Поскольку световые лучи искажаются гравитационными полями, огромные массы могут изгибать свет, проходящий мимо более удаленных объектов, и делать эти объекты более крупными или яркими, как космическое увеличительное стекло. В других случаях он может дублировать изображение объекта или даже «воспроизводить» такие события, как сверхновые. Опять же, это линзирование часто происходит сильнее, чем это должно быть возможно из видимой массы объекта в середине.
Поэтому мы знаем, что темная материя есть. Но становится все более странно — Вселенная, как мы знаем, не могла бы существовать без темной материи.
Темная история вселенной
Считается, что темная материя ответственна за крупномасштабную структуру вселенной, которую мы видим сегодня.
Точно так же, как и обычные вещи, темная материя, как полагают, была создана во время Большого взрыва — или, как предполагает одна из теорий, еще до него, в период космологической инфляции. В любом случае структура, которую мы видим сегодня в космосе, без темной материи была бы совсем другой.
В первые дни существования Вселенной все было относительно гладко. Мы можем видеть это сегодня на фоне космического микроволнового излучения, которое является излучением, которое было создано приблизительно через 400 000 лет после Большого взрыва. Независимо от того, в каком направлении мы смотрим, это излучение выглядит одинаково.
Но в наше время вселенная далеко не гладкая — она довольно комковатая. Эти комки — то, что мы видим как галактики, скопления, суперкластеры и другие гигантские структуры, и между ними всегда есть относительно пустое пространство. Например, прямо по соседству с Млечным Путем находится «локальная пустота», область непостижимого ничто, простирающаяся на сотни миллионов световых лет.
Так как же эволюционировала Вселенная от супергладких до комковатых скоплений? Это влияние темной материи.
Даже в спокойные ранние дни существования Вселенной в некоторых областях было чуть больше темной материи, чем в других. Эта дополнительная масса означала большую гравитацию, поэтому эти более плотные области притягивали регулярную материю, которая, в свою очередь, притягивала все больше и больше. В конечном счете жара и давление заставили эти очаги материи воспламениться как звезды, что дало толчок образованию планетных систем, галактик и кластеров, которые мы видим сегодня.
Тот факт, что вселенная структурирована так, как она есть, является еще одним свидетельством темной материи. Так что мы знаем, что она там. Но что именно это такое? И как ученые ее ищут?
Охота за темной материей
Эксперимент ABRACADABRA не обнаружил сигналов аксионов с массами от 0,31 до 8,3 наноэлектронвольт
Нелегко искать что-то невидимое и редко взаимодействующее с обычной материей. Итак, ученые начинают с теоретизирования того, что может быть темной материей, а затем разрабатывают и проводят эксперименты для проверки каждой гипотезы. Проблема в том, что темная материя может быть чем угодно.
Частицы темной материи могут быть одними из самых легких во Вселенной, или же они могут иметь массу карликовой планеты, или где угодно между ними. Темная материя может быть «горячей» или «холодной», что не имеет ничего общего с температурой, но описывает, как быстро она движется. Она может существовать в возбужденных состояниях, или иметь более низкую энергию.
«Теоретики очень искусны в том, чтобы придумывать предположения о том, чем может быть темная материя, и большинство из них — очень разумные предположения. Таким образом, они все могут быть правдой в принципе — но не все они будут правдой сразу. И поэтому нам нужно провести эксперименты и астрономические наблюдения, чтобы попытаться сузить возможности и прийти к истине», — говорит нам Раймонд Волкас, профессор теоретической физики частиц в Мельбурнском университете.
Может ли ЦЕРН создать темную материю?
3D-рендеринг Большого адронного коллайдера
Различные типы экспериментов охотятся за различными теоретическими частицами темной материи. Пожалуй, самые известные эксперименты проводятся церном на Большом адронном коллайдере (LHC). Там ученые ищут темную материю, пытаясь создать ее.
В LHC протоны сталкиваются с чрезвычайно высокими энергиями, создавая поток других частиц. Иногда это экзотические частицы, к которым ученые обычно не имеют доступа, и есть надежда, что темная материя может быть среди них.
Опять же, если бы темная материя была произведена в одном из этих столкновений, было бы невозможно непосредственно обнаружить – вместо этого она просто выплыла бы из туннеля, не взаимодействуя с детектором. Но именно это необнаружение и ищут ученые.
В физике законы сохранения энергии и импульса гласят, что в изолированной системе ни энергия, ни импульс не могут быть созданы или разрушены. Они могут менять форму, но сумма останется неизменной. Таким образом, ученые могут вычислить, сколько энергии и импульса поступило до столкновения протона, и измерить, сколько есть после этого. Если чего-то не хватает, это говорит о том, что нечто — как темная материя — ускользнуло и унесло эту энергию или импульс.
Хотя LHC совершил квадриллионы этих столкновений за эти годы, до сих пор не было обнаружено никаких подозрительных сигналов темной материи. Но это помогает сузить широкий спектр возможностей, поэтому будущие поиски могут быть более целенаправленными.
Возможно, ответ, наконец, придет после того, как в 2026 году модернизация LHC будет завершена.
Прямое обнаружение темной материи
Объект XENON1T, слева — резервуар для воды, в котором находится сам инструмент, с плакатом, показывающим, что находится внутри, справа — трехэтажное служебное здание.
В то время как LHC ищет в одной части спектра возможностей, другие эксперименты пытаются обнаружить его по-разному. Эти исследования основываются на возможности того, что темная материя иногда может взаимодействовать с обычной материей другими способами, кроме гравитации.
«LHC чувствителен только к некоторым видам темной материи», — говорит Волкас. «Есть другие разумные кандидаты темной материи, для которых LHC — неправильный эксперимент. Другой способ поиска темной материи — эксперименты по прямому обнаружению. Таким образом, идея заключается в том, что вы берете достаточно большой детектор, вы помещаете его в очень тихую обстановку, свободную от фоновых воздействий, которые могут имитировать ваш сигнал темной материи, а затем вы просто наблюдаете за детектором и ждете, пока ядро атома вздрогнет без видимой причины. Идея состоит в том, что частица темной материи пришла, ударила ядро и заставила его отскочить».
Эта базовая концепция была реализована в различных экспериментах по всему миру. Детекторы обычно размещаются в глубоких подземных камерах, вдали от помех, таких как космические лучи или электромагнитные сигналы. И все они ищут различные гипотетические частицы темной материи, используя в качестве детектора различные вещества.
В экспериментах типа LUX и XENON1T использовались огромные емкости с ксеноном, чтобы попытаться обнаружить кандидата темной материи, известного как слабо взаимодействующая массивная частица (WIMP). Идея заключается в том, что когда эти теоретические WIMP сталкиваются с атомом ксенона в резервуаре, они испускают вспышку света, которую могут обнаружить инструменты.
Другое предложение будет использовать вместо этого сверхтекучий гелий. Логика заключается в том, что гелий имеет гораздо более легкое атомное ядро, чем ксенон, поэтому он должен быть более чувствительным к удару темной материи. Это означает, что он может собирать частицы темной материи, которые в 10 000 раз легче, чем другие эксперименты.
Вариация идеи — это то, что называют «камерой снежного кома». В этом предложении используется резервуар с чистой водой, которая переохлаждается до -20 °С. При таких отрицательных температурах малейшее нарушение молекул воды может привести к вспышке замерзания. Так что если она внезапно замерзнет без видимой причины, это может быть сигналом темной материи. Преимущество заключается в том, что вода намного дешевле и проще, чем ксенон или сверхтекучий гелий.
В других экспериментах все происходит совершенно по-другому.
Аксион — гипотетическая частица
Представление камеры радиообнаружения аксионов.
Одним из ведущих кандидатов на роль темной материи является гипотетическая частица, называемая аксионом. Если бы они существовали, то были бы электрически нейтральными, очень легкими и дрейфовали бы повсюду волнами. Но самое главное, они должны иметь крошечные, но обнаруживаемые взаимодействия с электричеством и магнетизмом – и именно так они могут проявляться.
Эксперимент ABRACADABRA предназначен для поиска магнитного отпечатка аксионами. Идея состоит в том, что из-за того, как работают электромагнитные поля, в самом центре кольцевого магнита не должно быть магнитного поля. Так что, если вы установите его и посмотрите на середину, аксион может заявить о себе, если там возникнет самопроизвольное магнитное поле.
В похожей идее ученые из Стокгольмского университета предложили устройство, которое они называют «Аксион-радио». Детектор также использует мощный магнит, но в центре находится камера, заполненная холодной плазмой, которая содержит лес ультратонких проводов. На этот раз любые аксионы, проходящие через него, создадут небольшое электрическое поле, которое приведет к колебаниям в плазме.
Эксперимент nEDM ищет аксионы по-другому. Здесь нейтроны захватываются и электризуются, затем их спин контролируется. Высокое напряжение должно влиять на их скорость спина на определенной частоте – и если эта частота будет видна, что изменяется с течением времени, это может быть признаком аксионной интерференции.
Нулевые результаты не являются недействительными
Охота на темную материю продолжается
К сожалению, все описанные выше эксперименты либо дали нулевые результаты по темной материи, либо пока являются чисто теоретическими. Но отсутствие сигнала не делает эксперимент полным размытием — нулевые результаты важны, чтобы помочь свести на нет в этом гигантском пространстве возможностей.
Каждый тест ищет кандидатов на темную материю в определенном диапазоне масс и с определенными свойствами, и по мере того, как мы вычеркиваем их из списка, мы все больше приближаемся к истине. И это помогает тому, что многие эксперименты получают обновления в будущем, которые сделают их еще более чувствительными.
Тем временем, часто предлагаются совершенно новые идеи. В последние годы ученые предположили, что темная материя может принимать форму сверхтяжелых гравитино, гексакварков d-star или даже «темной жидкости» с отрицательной массой, пронизывающей Вселенную.
Или, конечно, возможно, это просто математическое недоразумение, и какая-то невидимая и неизвестная сила создает эти странные гравитационные эффекты. Что бы это ни было, охота на темную материю далека от завершения.
Источник