Меню

Мощнейший источник энергии во вселенной

Уникальный источник энергии: что такое антиматерия и на что она способна

Писатели-фантасты часто рассказывают об аннигиляции антиматерии как об одном из самых мощных и практически бесконечных источников энергии: ведь для мощного взрыва нужно совсем небольшое количество антивещества. Рассказываем, что это такое и почему ученые до сих пор не используют этот уникальный источник энергии.

Что такое антиматерия?

Объекты Вселенной — галактики, звезды, квазары, планеты, сверхновые, животные и люди — состоят из материи. Ее формируют различные элементарные частицы — кварки, лептоны, бозоны. Но оказалось, что существуют частицы, в которых одна доля характеристик полностью совпадает с параметрами «оригиналов», а другая имеет обратные значения. Данное свойство побудило ученых дать совокупности таких частиц общее название «антиматерия».

Судя по имеющимся на сегодня данным, не существует антигалактик, антизвезд или других крупных объектов из антивещества. И это весьма странно: согласно теории Большого взрыва, в момент зарождения нашей Вселенной появилось одинаковое количество вещества и антивещества, и куда делось последнее – непонятно. В настоящее время есть два объяснения этого феномена: либо антивещество исчезло сразу после взрыва, либо оно существует в каких-то отдаленных частях мироздания, и мы его просто его еще не обнаружили. Подобная асимметрия – одна из самых важных неразгаданных задач современной физики.

Антиматерия — материя, состоящая из античастиц — «зеркальных отражений» ряда элементарных частиц, которые обладают одинаковыми спином и массой, но отличаются друг от друга знаками всех других характеристик взаимодействия: электрического и цветового заряда, барионного и лептонного квантовых чисел. Некоторые частицы, например, фотон, не имеют античастиц или, что то же самое, являются античастицами по отношению к самим себе.

Как сегодня считается, античастицы реагируют на фундаментальные силы, определяющие структуру материи (сильное взаимодействие, образующее ядра, и электромагнитное, образующее атомы и молекулы), совершенно одинаково, поэтому структура антивещества должна быть такой же, как структура «нормального» вещества.

А что значит приставка «анти»?

Обычно мы используем эту приставку, чтобы обозначить противоположное явление. Что касается антиматерии — к ней можно отнести аналоги элементарных частиц, имеющие противоположные заряд, магнитный момент и некоторые другие характеристики. Конечно, все свойства частицы не могут измениться на противоположные. Например, масса и время жизни всегда должны оставаться положительными, ориентируясь на них, можно отнести частицы к одной категории (например, протонам или нейтронам).

Если сравнить протон и антипротон, то некоторые характеристики у них одинаковы: масса у обоих 938.2719(98) мегаэлектронвольт, спин ½. Но электрический заряд протона равен 1, а у антипротона — минус 1, барионное число (оно определяет количество сильно взаимодействующих частиц, состоящих из трех кварков) 1 и минус 1 соответственно.

Некоторые частицы, например, бозон Хиггса и фотон, не имеют антианалогов и называются истинно нейтральными.

Большинство античастиц вместе с частицами появляются в процессе, называемом «рождение пар». Для формирования такой пары требуется высокая энергия, то есть огромная скорость. В природе античастицы возникают при столкновении космических лучей с атмосферой Земли, внутри массивных звезд, рядом с пульсарами и активными ядрами галактик. Ученые же используют для этого коллайдеры-ускорители.

Где «добывают» и хранят антиматерию?

Антиматерию добывают в Большом адронном коллайдере, собирая облака антипротонов после столкновения пучка протонов с металлической мишенью и аккуратного замедления разлетающихся частиц, чтобы их можно было использовать в последующих экспериментах.

Заряженные частицы антивещества, вроде позитронов и антипротонов, можно хранить в так называемых ловушках Пеннинга. Они похожи на крошечные ускорители частиц. Внутри них частицы движутся по спирали, пока магнитные и электрические поля удерживают их от столкновения со стенками ловушки.

Однако ловушки Пеннинга не работают для нейтральных частиц вроде антиводорода. Поскольку у них нет заряда, эти частицы нельзя ограничить электрическими полями. Они удерживаются в ловушках Иоффе, которые работают, создавая область пространства, где магнитное поле становится больше во всех направлениях. Частицы антивещества застревают в области с самым слабым магнитным полем.

Читайте также:  Как поблагодарить вселенную за то что уже есть

Магнитное поле Земли может выступать в качестве ловушек антивещества. Антипротоны находили в определенных зонах вокруг Земли — радиационных поясах Ван Аллена.

Почему антивещество так сложно получить?

Стало также ясно, что изучить эту загадочную субстанцию намного труднее, чем зарегистрировать. В природе античастицы в стабильном состоянии пока не встречались. Проблема в том, что вещество и антивещество при «соприкосновении» аннигилируют (взаимно уничтожают друг друга). В лабораториях антиматерию получить вполне возможно — правда, довольно сложно удержать. Пока ученым удавалось это сделать только в течение считанных минут.

Вопрос хранения антиматерии — настоящая головная боль для физиков, ведь антипротоны и позитроны мгновенно аннигилируют при встрече с любыми частицами обычного вещества. Для их удержания ученым пришлось придумывать хитрые приспособления, способные предотвращать катастрофу. Заряженные античастицы хранятся в так называемой ловушке Пеннинга, которая напоминает миниатюрный ускоритель. Ее мощное магнитное и электрическое поле не дает позитронам и антипротонам столкнуться со стенками прибора. Однако подобное устройство не работает с нейтральными объектами вроде атома антиводорода. Для этого случая была разработана ловушка Иоффе. Удержание антиатомов в ней происходит за счет магнитного поля.

На что способна антиматерия?

Всего горстка антиматерии может произвести огромное количество энергии. Это делает ее популярным топливом для футуристических транспортных средств в научной фантастике. Вообще ракетный двигатель на антивеществе гипотетически возможен; главное ограничение — это накопление достаточного количества антивещества, чтобы использовать его.

Кстати, энергии 1 миллиграмма антивещества хватит для полета на Марс.

В настоящее время нет доступных технологий для массового производства или сбора антивещества в объеме, необходимом для этого приложения. Однако небольшое количество ученых провели исследования по моделированию движения и хранения. К ним относятся Ронан Кин и Вэй-Мин Чжан, которые работали в Западной резервной академии и Кентском государственном университете соответственно, а также Марк Вебер и его коллеги из Вашингтонского государственного университета. Когда-нибудь, если мы сможем найти способ создать или собрать большое количество антивещества, их исследования могут помочь воплотить в реальность межзвездные путешествия с использованием антивещества.

Почему мы до сих пор не используем этот источник энергии?

Аннигиляция антивещества и материи может высвободить огромное количество энергии. Грамм антивещества может вызвать взрыв размером с ядерную бомбу. Однако люди произвели очень незначительное количество антивещества.

Неэффективность производства антивещества огромна. Учитывая затраты на получение антиматерии, назад можно получить лишь десятую часть миллиарда (10 -10 ) вложенной энергии. Если бы ученые могли собрать все антивещество, которое мы когда-либо производили в ЦЕРНе, и аннигилировать его материей, то энергии хватило бы лишь чтобы включить одну электрическую лампочку на несколько минут.

Все антипротоны, созданные на ускорителе частиц Тэватрон в Фермилабе, составляют всего 15 нанограмм. Те, которые производятся в ЦЕРНе, составляют около 1 нанограмма. На сегодняшний день в DESY в Германии произведено примерно 2 нанограмма позитронов.

Если бы все антивещество, когда-либо производимое людьми, было уничтожено сразу, произведенной энергии не хватило бы даже для кипячения чашки чая.

Проблема заключается в эффективности и стоимости производства и хранения антивещества. Для производства 1 грамма антивещества потребуется примерно 25 миллионов миллиардов киловатт-часов энергии и более миллиона миллиардов долларов.

Спин — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с движением частицы как целого.

Источник

Спросите Итана №14: Самые высокоэнергетические частицы Вселенной

Результаты моих наблюдений лучше всего объясняет предположение, что излучение огромной проникающей энергии входит в нашу атмосферу сверху.
— Виктор Хесс

Вы можете думать, что мощнейшие ускорители частиц – SLAC, Fermilab, БАК,- источники самых высоких энергий, которые мы сможем увидеть. Но всё, что мы пытаемся сделать на земле, не входит ни в какое сравнение с естественными процессами Вселенной.

С тех пор, как я начал в детстве читать комиксы про «Фантастическую четвёрку», мне захотелось побольше узнать о космических лучах. Можете ли вы помочь мне в этом?

Ещё до того, как Юрий Гагарин смог оторваться от поверхности нашей планеты, было широко известно, что там, за пределами защиты атмосферы, космос наполнен высокоэнергетическим излучением. Как мы узнали об этом?

Читайте также:  Комиксы про вселенную марвел

Первые подозрения зародились во время простейших экспериментов с электроскопом.

Если вы придадите электрический заряд такому устройству, в котором два металлических листочка соединены друг с другом – они получат одинаковый заряд и будут отталкиваться. Можно было бы ожидать, что со временем заряд уйдёт в окружающих воздух – поэтому вам может прийти в голову изолировать устройство, например, создав вокруг него вакуум.

Но и в этом случае электроскоп разряжается. Даже если вы изолируете его при помощи свинца, он всё равно разрядится. Как выяснили экспериментаторы в начале 20-го века, чем выше вы поднимете электроскоп, тем быстрее он будет разряжаться. Несколько учёных выдвинули гипотезу – разряд происходит из-за высокоэнергетического излучения. Оно имеет высокую проникающую энергию и происхождение за пределами Земли.

В науке принято проверять гипотезы. В 1912 году Виктор Хесс провёл эксперимент с воздушным шаром, в котором он пытался найти эти высокоэнергетические космические частицы. И нашёл их в изобилии, став отцом космических лучей.

Ранние детекторы были удивительно просты. Вы настраиваете особую эмульсию, которая «чувствует» прохождение заряженных частиц через неё, и помещаете всё это в магнитное поле. Когда через это проходят частицы, вы можете узнать две важные вещи:

  • отношение заряда к массе частицы
  • и её скорость

которые зависят от того, как изгибается пути частицы. Это можно рассчитать, если знать силу приложенного магнитного поля.

В 1930-х годах несколько экспериментов, как с ранними наземными ускорителями, так и с детекторами космических лучей, выдали много очень интересной информации. Например, большая часть частиц космического излучения (90%) имела разные уровни энергии — от нескольких мегаэлектровольт, до таких высоких энергий, какие вы только могли измерить! Большая часть оставшихся была альфа-частицами, или ядрами гелия с двумя протонами и нейтронами, с такими же уровнями энергии.

Когда эти космические лучи встречаются с верхней частью земной атмосферы, они взаимодействуют с ней, и порождают каскадные реакции, которые создают дождь высокоэнергетических частиц, включая две новые: позитрон, о существовании которого выдвинул гипотезу в 1930 году Дирак. Это двойник электрона из мира антиматерии, той же массы, но с положительным зарядом, и мюон — нестабильная частица с таким же зарядом, как электрон, но в 206 раз тяжелее. Позитрон был открыт Карлом Андерсеном в 1932, а мюон – им и его студентом Сетом Неддермайером в 1936, но первый позитрон был открыт Полом Кюнзе несколькими годами ранее, о чём история почему-то забыла.

Удивительная вещь: если вы вытяните свою руку параллельно земле, то каждую секунду через неё будет проходить примерно 1 мюон.

Каждый мюон, проходящий через вашу руку, рождается в дожде космических лучей и каждый из них подтверждает специальную теорию относительности! Видите ли, эти мюоны создаются на высоте около 100 км, но среднее время жизни мюона составляет порядка 2,2 микросекунды. Даже если бы они двигались со скоростью света, им удалось бы пройти не более 660 метров перед распадом. Но из-за искажения времени, из-за того, что время частицы, движущейся со скоростью, близкой к скорости света, замедляется с точки зрения неподвижного наблюдателя, эти быстро двигающиеся мюоны могут пройти весь путь до поверхности земли перед своим распадом.

Читайте также:  Что такое геоцентрическая система вселенной

Если мы перенесёмся в сегодняшний день, то выяснится, что мы точно измерили как количество, так и энергетический спектр этих космических частиц.

Частицы энергии порядка 100 ГэВ встречаются чаще всего, и примерно 1 такая частица проходит через квадратный метр поверхности Земли каждую секунду. И, хотя существуют частицы большей энергии, они встречаются гораздо реже — тем реже, чем больше мы возьмём энергию. К примеру, если взять энергию 10 16 эВ, то такие частицы будут проходить через квадратный метр только раз в год. А самый высокоэнергетические частицы с энергией 5 × 10 10 ГэВ (или 5 × 10 19 эВ) раз в год пройдут через детектор со стороной в 10 км.

Такая идея выглядит довольно странно — и всё же, для ее осуществления есть резон: должно же быть ограничение энергии космических лучей и ограничение скорости протонов во Вселенной! Ограничения энергии, которую мы можем придать протону, может и не быть: можно ускорять заряженные частицы, используя магнитные поля, и самые крупные и активные чёрные дыры во Вселенной могут разогнать протоны до энергий, гораздо больших, чем мы наблюдали.

Но они должны путешествовать по Вселенной, чтобы добраться до нас, а Вселенная заполнена большим количеством холодного, низкоэнергетического излучения – фоновым космическим излучением.

Высокоэнергетические частицы создаются только в районах нахождения самых массивных и активных чёрных дыр во Вселенной, а все они находятся очень далеко от нашей галактики. И если возникнет частица с энергией превышающей 5 × 10 10 ГэВ, она сможет пройти не более нескольких миллионов световых лет, пока один из фотонов, оставшихся от Большого взрыва, не провзаимодействует с ней, получив пион. Избыточная энергия будет излучена, а оставшаяся энергия упадёт до ограничения космической энергии, известного, как Предел Грайзена — Зацепина — Кузьмина.

Поэтому мы сделали то единственное, что кажется физикам разумным: построили нереально огромный детектор, и начали искать частицы!

Обсерватория им. Пьера Оже занимается именно этим: подтверждает, что существуют космические лучи, достигающие, но не преодолевающие это энергетическое ограничение, в 10 миллионов раз превышающее энергии, достигаемые на БАК! Это значит, что самые быстрые протоны, которые мы только встречали, двигаются почти со скоростью света (которая составляет ровно 299,792,458 м/с), но немножко медленнее. Но насколько медленнее?

Быстрейшие протоны, находящиеся как раз на границе ограничения, двигаются со скоростью 299 792 457,999999999999918 метров в секунду. Если вы запустите такой протон и фотон до галактики Андромеды и обратно, то фотон прибудет назад всего лишь на 6 секунд раньше, чем протон – и это после пути, который займёт 5 миллионов лет! Но эти высокоэнергетические космические лучи не идут к нам с Андромеды: они идут из супермассивных чёрных дыр, типа NGC 1275, которые находятся на расстояниях в сотни миллионов или даже миллиардов световых лет от нас.

Благодаря НАСА и программе Interstellar Boundary Explorer (IBEX) мы знаем, что в глубоком космосе примерно в 10 раз больше космических лучей, чем мы можем обнаружить на Земле, и что солнечная гелиосфера защищает нас от большинства их.

Вот и вся фантастическая история космических лучей, включая мои любимые их свойства — высокоэнергетические частицы и ограничение на энергию космических лучей.

Источник

Adblock
detector