Меню

Может ли наше солнце быть как сверхновая

Как и когда наше Солнце превратится в Сверхновую

СУДЬБА НАШЕГО СОЛНЦА (новая версия)

Зная, какой объём водорода сгорает на Солнце ежесекундно, учёные смогли подсчитать, сколько лет осталось ему догорать. Но, если внутри нашей звезды зреет не одно гелиевое ядро, как говорится в учебниках астрономии, а целая дюжина таких ядер, словно поленьев в пылающем костре, то время жизни Солнца может оказаться более коротким. Ведь скорость горения звезды и её температура будут зависеть от размеров горючего материала.

Версия того, что Солнце внутри себя имеет не одно гелиевое ядро, как это сказано в учебниках, а чёртову дюжину ядер, обусловлена строением магнитного поля самого Солнца и расположением на нем чёрных пятен, что может привести к целому ряду совершенно неожиданных открытий и выводов.

Например, ученые–солнечники заявляют, что магнитное поле Солнца обладаете множеством полюсов, чем подтверждают нашу версию о том, что.
** …что все звёзды, благодаря своему весьма сложному внутреннему строению, – существа многополярные. Причём только два полюса (в любой звезде) являются основными, а остальные, как бы — «аномальными».
***Столь сложная структура поля позволяет звёздам уверенно держаться за гигантское поле галактики, чтобы всегда оставаться на своём месте.
Можно доказать, что эти аномальные магнитные зоны возникают именно из-за расположения этих ядер. Но всё по-порядку.

Известно, что водород в свободном, то есть, освобожденном от кислорода или углерода состоянии, тут же улетучивается в космическое пространство. Туда его выталкивает магнитное поле Земли и других планет, вынуждая скапливаться вдали от гигантских звёзд, там, где магнитное поле вселенной особенно ослаблено. Только там атомы водорода, не испытывая магнитного давления небесных тел, могут соединиться в одну огромную молекулу, которая и станет новой звездой*. Но такое слияние происходит довольно интересным способом.
Докажем это в 7 этапов:

1) Наука геометрия утверждает, что тринадцать одинаковых шаров могут сложиться в более крупную шарообразную форму. Так, если один () шарик окажется в центре, а двенадцать других прильнут к его поверхности со всех сторон, то получится более крупный шар с рифленой поверхностью.
. Значит, если 13 намагниченных шариков сами сложатся в шарообразную форму, и каждый шар займет своё личное место в магнитной иерархии, то, вместо отдельных атомов водорода, в космосе возникнет множество водородных молекул. И, если не ошибаюсь, сила поля каждой молекулы будет в 13 раз больше, чем у одного отдельного атом.

2) Однако «подобное тянется к подобному», и 13 таких «первичных» молекул теперь тоже должны слиться в шарообразную форму, вобрав в себя (13 х 13) ровно 169 атомов водорода (см. рисунок).

3) Далее, на третьем этапе притяжения, в космосе должны образоваться еще более крупные молекулы, сложившиеся из тринадцати «вторичных» молекул. Они будут заключать в себе уже по 169 х 13 = 2197 атомов водорода.
Диаметр «третичной» молекулы будет чуть меньше трех нанометров, то есть, 0,000 000 003 м.
Разумеется, можно определить и абсолютно точный вес такой «снежинки», умножив атомный вес водорода на число всех атомов, слипшихся в единую молекулу. Притом, орбиты электронов каждого атома постоянно растущей молекуле должны будут выстроиться внутри нее согласно направлению силовых линий внутреннего поля молекулы (см. тот же рисунок).

4) Выросшая таким образом «снежинка» (в свою очередь!) должна слепиться с двенадцатью себе подобными (2197 х 13 = . дальше считайте сами), образовав еще более крупную молекулу.

5) Через пятнадцать — двадцать скачков роста, каждая льдинка превратится в приличную глыбу с радиусом 3 км, гладкой шарообразной поверхностью и мощным магнитным полем. По сути, это размеры мелкой ледяной кометы.
*** Возможно, облако Оорто, находящееся на расстоянии от 100 до 200 астрономических единиц от Солнца, состоит именно из таких вот (постоянно растущих) водородных глыб, из которых через некоторое число (тысяч?) лет образуется новая звезда. То есть, облако Оорто спрессуется в плотную массу и превратится в огромную водородную молекулу.

6) На каком-то этапе роста (при умножении на число 13), масса нашего шара достигнет размеров планеты Юпитер.
А когда 13 таких «юпитеров» слипнутся в единый шар, то в небе загорится новая звезда, размером с наше Солнце.
** И заметьте, что число связанных в молекулу атомов водорода (у этого Солнца) можно подсчитать с абсолютной точностью!
Впрочем, в космосе немало более крупных звезд (в 13 раз, . и более),- всё зависит только от наличия строительного материала в этом таком облаке.

Читайте также:  Легкий крем от солнца spf 50

7) Гигантское давление сцепившихся шаров вызовет высокую температуру, от которой вспыхнут частички сопутствующего водорода, застрявшего в теле звезды, но не связанного с общей структурой шаров. Водород, будучи в связанном состоянии, не горюч. Но под действием огня поверхности «юпитеров» разогреются, постоянно высвобождая из своей связки всё новые частички горючего водорода. Вырываясь наружу, как из газовой горелки, они создают высокотемпературную солнечную корону, гораздо более горячуу, чем тело Солнца.

*** И так, наше Солнце — это гигантская водородная молекула, которая горит уже где-то пять(?) миллиардов лет. Но если вы решите подсчитать, сколько ему осталось гореть, то вначале непременно прочтите следующую главу.

ВСЯКАЯ ЗВЕЗДА — ПРОДУКТИВНЫЙ ИНКУБАТОР ПЛАНЕТ
Докажем это в 6+2 этапов:

1) Следуя логике выше изложенного, внутри нашей звезды должно образоваться тринадцать самостоятельных центров притяжения,- по одному в каждом из тринадцати «юпитеров».

2) Туда, как в печное поддувало, должен проваливаться гелий, словно некая зола.
Версию такого устройства звёзд подтверждает и фотография улыбающегося Солнца, сделанная учеными в 2010 году.
Присмотревшись к этому фото, можно заметить, что оба солнечных «глаза» (в виде двух гигантских чёрных отверстий) появились точно в тех местах, где, судя по бугристой поверхности Солнца, сходятся вместе три «юпитера». А зловещая «улыбка» — явно приоткрывшаяся щель между стыками двух «юпитеров» расположенных ниже «глаз».

3) Каждое гелиевое ядро, развиваясь внутри своего «юпитера», должно наращивать собственное магнитное поле. Однако это поле (по закону диалектики) должно быть перевернуто относительно внутреннего поля «юпитера» и его водородной массы, окружающей ядро,- уж напрягите своё пространственное воображение или просто поверьте автору на слово.
Таким образом, (внутренние) магнитные поля водородных оболочек «юпитеров», обтекая (магнитные же!) поля гелиевых ядер, будут сжимать их с огромной силой. А (наружные) магнитные поля этих ядер, по мере нарастания их силы, будут пытаться расширить водородные оболочки, давя на них изнутри. Сегодня соотношение двух этих масс, по мнению учёных, составляет 80% к 20% в пользу водорода.
***С этого момента начинается научная страшилка для взрослых:

4) Когда соотношение двух этих масс диаметрально поменяется,- гелиевые ядра подрастут, а водородные оболочки истощатся и совсем обмякнут, то магнитные поля гелиевых ядер начнут раздувать остатки водородной оболочки Солнца. Наше Солнце начнёт быстро расти, как огромный (многокамерный) резиновый шар. Вскоре этот Жёлтый Карлик превратится вначале в Красного, а затем и в Голубого Гиганта и, через 3 — 5 миллионов лет, лопнет словно воздушный шарик.
Температура его горения неимоверно возрастет, способствуя дозреванию гелиевых ядер, как цыплят в яичной скорлупе. Это и есть космический инкубатор, в котором, еще не вылупившиеся «цыплята» превращаются в планеты с полным набором химических элементов таблицы Менделеева.

5) Когда пузатое светило лопнет, оно разбросает свои семена по грядкам всей нашей галактики.

Понятно, что космическая пыль возникает только после взрыва звёзд-гигантов.
*** Древние китайцы оставили летописную память о таком взрыве в созвездии Рака(?), рассказывая, что «большая звезда в небе днём светила ярче Солнца». С тех пор пыль от того взрыва несколько рассеялась, но учёные продолжают следить за этим процессом.

6) И так, наше Солнце, наравне с другими звёздами, вынашивает в своём чреве сразу дюжину планет земной группы, похожих на Меркурий, Венеру, Землю, Марс.
А разлетевшись в разные стороны, скажем, «на миллионы всяческих парсек», новорождённые планеты попадут в мощные магнитные сети той или иной более молодой звезды, где и займут своё место, вращаясь вокруг неё по собственным орбитам как цыплята вокруг клуши…

Читайте также:  Фамилии участников команды утомленные солнцем

7)Космос – материя живая! А взрыв каждой звезды – это акт рождения новых планет. Однако, при рождении плода, должен выходить и послед — та мякоть, та питательная среда для плода, которая после рождения становится ему ненужной. Есть она и в солнечной утробе,- . о живом приходится говорить как о живом.
Так, из всех 13-ти «юпитеров», из которых сложена наша звезда, менее горячим должен оказаться тот «юпитер», который находился в самом центре звезды. Он там, можно сказать, «прохлаждался», за что и получил гораздо меньшую порцию гелия, чем другие. Поэтому гелиевое ядро в нем оказалось самым маленьким, не способным прорвать водородную оболочку.

8) Находясь в центре, и удерживая 12 «апостолов» вокруг себя, юпитер не успел прогореть на столько, чтобы раздуться и лопнуть,- для этого магнитное поле гелиевого ядра внутри него оказалось слишком слабеньким.
Но после взрыва, этот не до конца выгоревший изнутри «юпитер» вылетел вместе с остальными планетами и, будучи втянутым в магнитное поле, например, в поле нашей Солнечной системы, превратился в планету «неземной группы». И имя ему – Юпитер. А, может быть, Уран? Внутри этих планет с «мягкой» поверхностью протекают термоядерные реакции.

Во всяком случае, современные астрономы когда-нибудь сойдутся во мнении, что все «мягкотелые» планеты являются типичными «огарками» какой-нибудь взорвавшейся звезды. И если этот «огарок» снова загорится, то, пожалуй, сможет превратиться в БЕЛОГО КАРЛИКА, радиус которого будет сравним с радиусом Земли, а масса может варьироваться от 0,6 до 1,44 солнечных масс.
******
Впрочем, учёные астрономы эту придуманную версию быстро опровергнут. Они заявят, что в Белого карлика должно превратиться само Солнце, мол, у него не хватит магнитной энергии, чтобы взорваться и оно просто сдуется. Значит, звезда таких «мелких» размеров должна оказаться не плодородной, и никаких «цыплят» она на свет произвести не сможет. А Голубыми гигантами, по их мнению, становятся более крупные звёзды, превышающие массу нашего Солнца в 13 и более раз.
Так ли это на самом деле,- время покажет.
*** ***
******

Источник

Что же такое загадочная сверхновая звезда?

В ночном небе вдруг вспыхивает ослепительно яркая звезда — ее не было всего несколько часов назад, но сейчас она горит как маяк.

Эта яркая звезда на самом деле уже не совсем звезда. Яркая точка света — это взрыв звезды, которая достигла конца своей жизни, и стала известна как сверхновая.

Сверхновые могут кратковременно затмевать целые галактики и излучать больше энергии, чем наше Солнце выработает за всю свою жизнь. Они также являются основным источником тяжелых элементов во Вселенной. Согласно НАСА, сверхновые являются «самым большим взрывом, который может произойти в космосе».

История наблюдений сверхновых

Различные цивилизации описывали сверхновые еще задолго до того, как был изобретен телескоп. Самая ранняя зарегистрированная сверхновая — RCW 86. Китайские астрономы наблюдали ее в 185 году нашей эры. Их записи показывают, что эта «новая звезда» оставалась на небе в течение восьми месяцев.

До начала 17 века, до того как стали доступны телескопы, по данным Британской энциклопедии было зарегистрировано семь сверхновых звезд.

То, что у нас известно сегодня как Крабовидная туманность, является остатком самой известной из этих сверхновых. Китайские и корейские астрономы зафиксировали в своих записях этот звездный взрыв в 1054 году. Юго-западные индейцы, возможно, тоже его видели (согласно наскальным рисункам, которые обнаружены в Аризоне и Нью-Мексико). Сверхновая, образовавшая Крабовидную туманность, была настолько яркой, что астрономы могли видеть ее даже днем.

Другие сверхновые, которые были обнаружены до того, как был изобретен телескоп, произошли в 393, 1006, 1181, 1572 (изучены знаменитым астрономом Тихо Браге) и в 1604 годах. Браге писал о своих наблюдениях за «новой звездой» в своей книге «De Stella Nova», что и породило название «новая». Новая отличается от сверхновой. Оба являются внезапными вспышками яркости, когда горячие газы вырываются наружу, но для сверхновой звезды этот взрыв является катастрофическим и означает конец жизни звезды.

Читайте также:  Солнце во множественном числе именительном падеже

Термин «сверхновая» не использовался до 1930-х годов. Первым его использовали Уолтер Бааде и Фриц Цвикки из Обсерватории Маунт-Вильсон, в связи со взрывоподобным событием, которое они наблюдали, названным S Andromedae (также известным как SN 1885A). Это событие произошло в галактике Андромеда. Они предположили, что сверхновые возникают, когда обычные звезды сталкиваются с нейтронными.

Одна из самых известных сверхновых — SN 1987A. Это случилось в 1987 году, и это событие все еще изучается астрономами, потому что они могут наблюдать, как сверхновая эволюционирует в первые несколько десятилетий после взрыва.

Смерть звезды

В среднем, сверхновая будет происходить примерно раз в 50 лет в галактике размером с Млечный Путь. Иными словами, звезда взрывается каждую секунду или близко в этому где-то во Вселенной, и поэтому многие из них находятся очень далеко от Земли. Около 10 миллионов лет назад кластер сверхновых создал «местный пузырь», размерами в 300 световых лет, область газа в межзвездной среде, которая окружает Солнечную систему.

Достоверно установлено, что смерть звезды зависит отчасти от ее массы. Наше Солнце, например, не имеет достаточной массы, чтобы взорваться как сверхновая (хотя новости для Земли есть и не очень хорошие, потому что как только Солнце истратит свое термоядерное топливо, возможно, через пару миллиардов лет, оно набухнет до состояния красного гиганта, который, вероятно, испарит наш мир, прежде чем постепенно охладится и станет белым карликом). Но при нужном количестве массы звезда может сгореть в огненном взрыве.

Звезда может стать сверхновой в одном из двух случаях:

  • Сверхновая звезда типа I: звезда забирает вещество у своего соседа, пока не начнется взрывная ядерная реакция.
  • Типовая сверхновая звезда:у звезды заканчивается ядерное топливо и она разрушается под собственной гравитацией.

Сверхновые типа II

Давайте сначала рассмотрим более захватывающий тип сверхновой — II. Для того, чтобы звезда взорвалась как сверхновая II типа, она должна быть в несколько раз более массивной, чем Солнце (оценки говорят о массах от 8 до 15 солнечных). Подобно Солнцу, в ней будет гореть водород, а затем гелий. У нее также будет достаточно массы и давления, чтобы синтезировать углерод. Вот что будет дальше:

  • Постепенно более тяжелые элементы появляются в центре, и он станет слоистым, как лук, при этом элементы полегче будут расположены по массе в порядке убывания к внешней стороне звезды.
  • Когда ядро ​​звезды превзойдет некоторую массу (предел Чандрасекара), звезда взрывается (по этой причине эти сверхновые также известны как сверхновые ядра).
  • Ядро нагревается и становится плотнее.
  • В конце концов материя отскакивает от ядра, вытесняя звездный материал в космос, образуя сверхновую.

На месте взрыва остается сверхплотный объект, называемый нейтронной звездой, размером с город, который может содержать массу Солнца в небольшом пространстве.

Существуют подкатегории сверхновых типа II, классифицированные по их кривым блеска. Свет сверхновых типа II-L неуклонно снижается после взрыва, в то время как свет типа II-P остается устойчивым на некоторое время прежде, чем уменьшиться.Оба типа имеют линию водорода в спектрах.

Астрономы считают, что звезды, гораздо более массивные, чем Солнце (около 20-30 солнечных масс), не могут взорваться как сверхновая. Вместо этого они разрушаются, образуя черные дыры.

Сверхновые типа I

У сверхновых типа I отсутствует линия водорода в их спектрах.

Считается, что сверхновые типа Ia происходят от белых карликовых звезд в тесной двоичной системе. Когда газ от соседней звезды накапливается на белом карлике, тот постепенно сжимается и, в конечном счете, происходит быстрая ядерная реакция внутри, что в конечном итоге приводит к катастрофической вспышке сверхновой.

Астрономы используют сверхновые типа Ia для измерения космических расстояний, потому что, как считается, они пылают с одинаковой яркостью на своих пиках.

Сверхновые типа Ib и Ic также претерпевают крах ядра, как и сверхновые типа II, но теряют при этом большую часть своих внешних оболочек из водорода.

Источник

Adblock
detector