Научные открытия
Одним из самых выдающихся открытий в физике, вне всякого сомнения, является общая теория относительности А. Эйнштейна. Десять лет, с 1905 по 1915 год понадобилось Эйнштейну, чтобы пройти путь от специальной теории относительности до такого гениального творения, как общая теория относительности. В 1912 году, когда работа над общей теорией была в самом разгаре, он писал своему другу: «Ещё никогда в жизни на мою долю не выпадал такой каторжный труд. По сравнению с этой задачей первоначальная теория относительности — это просто детская забава». Основной побудительной причиной создания общей теории относительности была эстетическая неудовлетворённость Эйнштейна сложившейся к тому времени физической картиной мира. Теория произвела поистине революционный научный переворот. И вместе с тем она вызвала и продолжает вызывать множество споров. В данной статье мы познакомимся не с самой теорией (знакомству с теорией мы посвятим отдельную работу), а с её экспериментальным подтверждением, что, как мне кажется, не менее интересно.
© Владимир Каланов,
сайт «Знания-сила».
Даже после того, как теория тяготения Эйнштейна получила признание в научном мире, предпринимались попытки построения теории гравитации, основанной на других принципах. Однако всякий раз оказывалось, что именно теория Эйнштейна подтверждается экспериментальными проверками и астрономическими наблюдениями.
Теория тестировалась как прямыми, так и косвенными методами. К косвенным относятся опыты, подтверждающие эвристические (от греч. «эвриско» — «нахожу») принципы, принятые Эйнштейном за основу теории. Это, например, уточнения равенства инертной и гравитационной масс (т.е. принципа эквивалентности), выполненные венгерским физиком Лорандом фон Этвёшем в 1889—1908 гг. и американским исследователем Робертом Дикке в 1964 г. К числу косвенных подтверждений теории Эйнштейна можно причислить и открытое американским астрономом Эдвином Хабблом расширение Вселенной, и обнаруженное его соотечественниками Арно Пензиасом и Робертом Уилсоном реликтовое излучение, заполняющее Вселенную. И всё же это лишь косвенные аргументы в пользу теории Эйнштейна Так, из принципа эквивалентности не вытекают уравнения Эйнштейна, — напротив, сам принцип является следствием уравнений. Прямые наблюдения подтвердили эффекты, непосредственно связанные с уравнениями поля Эйнштейна.
ДВИЖЕНИЕ ПЕРИГЕЛИЯ МЕРКУРИЯ
Пояснение: перигелием (от греч. «пери» — «около» и «гелиос» — «солнце») орбиты называется точка, в которой небесное тело оказывается ближе всего к Солнцу.
Как только Эйнштейн построил тензорные уравнения гравитационного поля, причём не окончательный, а некий промежуточный вариант, оказавшийся вполне пригодным для решения ряда частных задач, он тут же вычислил с их помощью кривизну пространства-времени, создаваемую Солнцем. Затем с помощью уравнений так называемой геодезической показал, что, в то время как большинство планет должно двигаться практически в полном соответствии с предсказаниями теории Ньютона, в случае Меркурия должно быть вполне поддающееся наблюдению отклонение от этих предсказаний.
Ученым давно было известно, что из-за влияния полей тяготения других планет и по ряду других причин Меркурий движется не просто по эллипсу, а по эллипсу, который сам медленно поворачивается. Это явление называется прецессией перигелия Меркурия. Однако учет всевозможных поправок к ньютонову закону всемирного тяготения не позволил объяснить весь эффект полностью. Оказалось, что эллипс поворачивается приблизительно на 43 угловые секунды в столетие быстрее, чем ему следовало бы исходя из предсказаний откорректированной ньютоновой теории. Так вот, Эйнштейн показал, что из его уравнений следует именно такое отличие от предсказаний теории Ньютона.
Вычисления, выполненные на основе закона тяготения Ньютона, показывают, что суммарное влияние всех известных планет должно приводить к повороту перигелия орбиты Меркурия за столетие на 532 ″ (угловых секунды) . Но ещё в 1859 г. французский астроном Урбен Жан Жозеф Леверье (1811 —1877), наблюдая за движением Меркурия, обнаружил, что фактически этот поворот составляет 575 ″ , т.е. перигелий орбиты Меркурия смещается не так, как предсказывала теория Ньютона.
Хотя расхождение в 43 ″ и очень маленькая величина, но тем не менее она значительно превосходит возможные погрешности наблюдений. Вначале астрономы, в том числе и Леверье, пытались объяснить это теми же причинами, что и отклонение движения планеты Уран от расчётной орбиты.
Леверье предположил, что между Солнцем и Меркурием тоже существует неизвестная планета. Именно она своим притяжением вызывает аномалию в поведении орбиты Меркурия. Планете дали название Вулкан (в римской мифологии бог пламени). Действительность оказалась совсем не такой, как думал Леверье. Никакой планеты Вулкан никто так и не обнаружил, потому что на самом деле её просто не существует. Не спасли положения и попытки математического уточнения закона тяготения Ньютона. Например, П. Лаплас выдвинул гипотезу о поглощении тяготения в межпланетной среде, введя поправочный коэффициент в закон всемирного тяготения, но сразу же возникали трудности с объяснением движения других планет.
Перигелий орбиты Меркурия смещается не под воздействием невидимого Вулкана — движение ближайшей к Солнцу планеты подчиняется более точному закону тяготения: не ньютонову, а эйнштейновскому.
У Эйнштейна получилось вычислить не только правильное значение прецессии перигелия Меркурия, но и соответствующее наблюдениям направление прецессии. К тому же этот эффект в общей теории относительности возникает совершенно естественно, без всяких ухищрений и подгонки числовых данных для приведения теоретических результатов в соответствие с результатами наблюдений.
Согласно Эйнштейну, наличие больших масс материи приводит к изменению свойств пространства. Описание явления тяготения принципиально меняется. По Ньютону, это движение под действием силы тяготения, по Эйнштейну, это свободное движение тел в искривлённом пространстве-времени. Загадка движения Меркурия находит при этом естественное объяснение — ведь Меркурий, находясь ближе к Солнцу, чем другие планеты, движется в гораздо более сильном гравитационном поле.
Но Эйнштейн на этом не остановился. Он вычислил ещё и величину гравитационного красного смещения, испытываемого светом на пути от Солнца к Земле, а также величину отклонения лучей света, проходящих вблизи поверхности Солнца, вызванного его гравитационным полем.
ИСКРИВЛЕНИЕ СВЕТОВОГО ЛУЧА ВБЛИЗИ БОЛЬШИХ МАСС
Искривление светового луча вблизи больших гравитационных масс
Если смотреть на звезду с помощью зеркала, как показано на рисунке (А) , то изображение звезды будет смещено в направлении, указанном пунктирной линией. Нечто похожее имеет место и на рисунке (Б) : из-за отклонения Солнцем луча света, идущего от звезды, она кажется смещенной в направлении, указанном пунктирной линией. Наблюдатель в точке P находится в отбрасываемой Луной тени. Для него Солнце полностью закрыто Луной, то есть он наблюдает полное солнечное затмение (В) . Поскольку прямые солнечные лучи не попадают в P, то небо становится темнее и наблюдатель способен увидеть звезды, включая и те, что находятся вблизи затененной Луной области небосвода и которые он в противном случае не увидел бы. Вот почему для обнаружения отклонения луча света понадобилось полное солнечное затмение. В наши дни благодаря квазарам обходятся без затмений.
Ещё Ньютон допускал, что свет подвержен влиянию тяготения. Сейчас достоверно известно: свет, падающий на предмет, оказывает на него давление, т.е. несёт энергию. Это равносильно утверждению, что свет обладает массой (подсчитано, что на Землю за сутки падает около 160 т солнечного света в пересчёте на массу). Но тогда луч от далёкой звезды, проходя вблизи Солнца, подобно планетам или кометам, должен двигаться по криволинейной траектории. А видимое положение самой звезды на небе будет смещено.
Видимое смещение звезды можно вычислить, однако теории Эйнштейна и Ньютона приводят к разным ответам. В первом случае это примерно 1,75 ″ , во втором — в два раза меньше. Теория Эйнштейна вносит релятивистскую поправку, обусловленную искривлением пространства вблизи Солнца. Установить истину помогли прямые астрономические наблюдения.
Звезду, находящуюся на одной линии с Солнцем, можно увидеть только во время полного солнечного затмения. После полного солнечного затмения 29 мая 1919 года, через четыре года после публикации окончательного варианта общей теории относительности гипотеза была подтверждена.
А уже спустя 50 лет с 1969 года появилась техническая возможность определять смещение звёзд независимо от затмений — измеряя отклонения радиоволн, идущих от квазаров. Благодаря прямым астрономическим наблюдениям были получены значения, близкие к предсказанию Альберта Эйнштейна, — их ошибка не превышала 10%.
Источник
Наблюдение искривления световых лучей вблизи солнца
§ 2.2 Искривление лучей света возле Солнца и А. Эддингтон
Кривдою свет пройдёшь, да назад не воротишься.
Русская народная мудрость
Как видим, Космос преподносит много доказательств ошибочности специальной теории относительности и справедливости БТР. Но, с другой стороны, тот же Космос как будто даёт доказательства справедливости общей теории относительности, этого обобщения СТО на случай ускоренно движущихся или находящихся в поле тяготения систем. Посмотрим, так ли это в действительности. Одним из первых доказательств теории относительности стало наблюдение отклонения лучей света, проходящих возле Солнца, вызываемое искривлением пространства гигантским гравитационным полем нашей звезды. Этот эффект, действительно, удалось наблюдать во время солнечного затмения, когда сияние Солнца не затмевало собой блеск видимых возле него звёзд. При этом, оказалось, что положения звёзд возле Солнца, действительно, претерпели небольшие угловые смещения в сравнении с их обычным взаимоположением в моменты, когда солнце находилось в другой части неба. Измеренные А. Эддингтоном смещения как будто находились в согласии с предсказаниями ОТО [26].
И, всё же, многие упрекали поздней А. Эддингтона в мошенничестве. Дело в том, что английский астроном Артур Эддингтон был весьма пристрастным наблюдателем и ярым сторонником теории относительности. Он не только развил общую теорию относительности, издав книгу о ней, но и построил на её основе теорию расширяющейся Вселенной. Он всячески пропагандировал, популяризировал, распространял теорию относительности. Именно Эддингтону теория относительности, пожалуй, больше всего обязана своей громкой славой и быстрым признанием. Лишь после его наблюдений теория относительности стала получать всемирное признание. Однако, как отмечают многие исследователи, разрешающая способность инструментов, которыми располагал Эддингтон, не позволяла сделать вывода о справедливости или ошибочности ОТО [37]. Кроме того, независимые наблюдения другой группы, проводившей исследования затмения в то же время, противоречили наблюдениям группы Эддингтона и ОТО, что поздней списали на инструментальные ошибки [73, с. 223]. А главное, — чрезвычайно благоприятные условия затмения 1919 г. уже долгое время не могли повториться. И результат Эддингтона нельзя было точно проверить в течение десятков лет, — приходилось верить ему на слово. Поэтому, Эддингтона часто и обвиняют в подтасовке фактов в пользу ОТО и предвзятом выводе. Понятное дело, что наблюдатель, жаждущий получения заданного результата, обязательно тем или иным способом его получит. А Эддингтон был именно фанатиком СТО, зацикленным на этой теории. Недаром сопровождавшие его в экспедиции сотрудники подшучивали, что Эддингтон сойдёт с ума, если эксперимент провалится и докажет ложность ОТО [37]. Искривление лучей света возле Солнца стало орудием для искажения истины, для торжества кривды в руках Эддингтона и Эйнштейна. Привлекая искривление космического пространства, они, подобно мошенникам из «Королевства кривых зеркал» В. Губарева, искажали факты, истину.
Стоит отметить, что Эддингтон и поздней не раз уличался коллегами в научных махинациях и подтасовках, подгонках фактов под теорию (против подобных методик предостерегал ещё Шерлок Холмс). Это касается, например, анекдотичного выведения Эддингтоном постоянной тонкой структуры и отношения протонной массы к электронной через π и e — методом постепенной подгонки [19, с. 308], или его теории пульсирующих звёзд (цефеид), — как увидим, тоже сыгравшей крайне негативную роль в судьбе БТР (§ 2.12). Так что, в целом, деятельность Эддингтона можно охарактеризовать как нечестную, вредную для науки. И, хотя спустя десятилетия, результат экспедиции Эддингтона был подтверждён более точными наблюдениями, это не снимает обвинений: признание теории относительности и отвержение БТР было преждевременным [2, 6]. Конечно, победителей не судят, но лишь в том случае, если победа досталась им честным путём. А победы, доставшиеся мошеннически (с фальстартом, с применением допинга), аннулируют с долговременным отстранением от участия в соревнованиях. Из-за данного Эддингтоном допинга и преждевременного старта теория относительности обманом получила преимущество и досрочное незаслуженное признание, начав стала ускоренно развиваться, тогда как все другие, альтернативные теории, напротив, — были оставлены и приостановлены в развитии. А, между тем, такие теории тоже дают объяснение отклонению световых лучей возле Солнца.
Начнём с того, что отклонение световых лучей в поле тяготения Солнца было предсказано задолго до Эйнштейна на основе классических теорий. Ещё в начале XIX века И. Зольднер, применив ньютонову корпускулярную теорию света, представлявшую свет в виде потока частиц, летящих со скоростью c (как в БТР), показал, что траектория светового луча будет изгибаться возле Солнца, подобно траекториям комет. Световые частицы движутся по гиперболе в поле тяготения Солнца, отклоняясь им на малый угол от исходного направления полёта. По расчётам Зольднера, этот угол составлял около 0,84», что, по порядку величины, согласуется с измеренным значением отклонения света звёзд возле Солнца. То же значение получил поначалу и Эйнштейн, повторив один в один расчёт Зольднера и даже сделанную им ошибку (0,84» вместо 0,88», положенных по расчёту), что многие сочли доказательством плагиата Эйнштейна (см. О. Акимов. Критика теории относительности). Итак, движение частиц света в поле тяготения по баллистической траектории уже даёт требуемый порядок отклонения. Если ж учесть и предсказанную баллистической теорией зависимость силы тяготения от скорости (§ 2.3), то получим значение отклонения лучей света, ещё лучше согласующееся с измеренным [107]. Впрочем, на деле, как покажем далее, такое чисто механическое объяснение отклонения света Солнцем не вполне отвечает БТР, а, потому, реальная причина и величина отклонения заложена в совместном действии механических и оптических эффектов, предсказанных Ритцем.
Многие авторы, в том числе Тесла [110], сходятся во мнении, что истинная причина отклонения лучей вблизи Солнца заключена не в искривлении пространства, а — в силовом поле Солнца и в солнечной короне, простирающихся далеко за пределы поверхности Солнца слоях газа, взаимодействуя с которыми, лучи света искривляют свой путь. И, действительно, если учесть, что плотность корональных газов должна убывать с удалением от Солнца, рефракция должна привести к слабому искривлению лучей [111]. Однако, как показывают расчёты, плотность короны слишком мала, чтобы вызвать ощутимую рефракцию, и причина эффекта несколько в ином. А именно: согласно БТР, свет, проходя через корональные слои солнечной атмосферы, переизлучается её атомами, приобретая дополнительно их скорость. Важна, однако, не сама скорость, а её изменение за время движения светового луча в элементе газового объёма, иными словами, — ускорение газа. Объём газа сообщает проходящему сквозь него свету движение, приобретённое атомами газа в поле тяготения Солнца. Газ, а точнее, — плазма, как бы увлекает свет в направлении к Солнцу и, тем самым, искривляет световой луч, словно бы притянутый нашим светилом.
Чтобы найти вызванное притяжением Солнца отклонение лучей звёзд, достаточно рассчитать изменение их скорости в зависимости от расстояния R до центра светила. Ведь именно изменение фазовой скорости и длины волны света ведёт в атмосфере и в других преломляющих средах к искривлению лучей света. Ранее было вычислено (§ 1.19), что с удалением от Солнца с начального расстояния R длина волны света λ, переизлучаемого ускоренно движущимися атомами, увеличивается за счёт эффекта Ритца на величину
где G — гравитационная постоянная, MS — масса Солнца. И, наоборот, с приближением луча света от далёкой звезды к Солнцу на расстояние R длина световой волны λ сжимается, по эффекту Ритца, до значения
Это эквивалентно отрицательному набегу фазы и сокращению длин волн при падении луча в среду с показателем преломления n= λ/λ ‘ , с соответствующим снижением фазовой скорости света до значения
То есть, по баллистической теории с подходом к Солнцу скорость и длина световых волн уменьшается, а при удалении — вновь нарастает. Луч, идя от источника к приёмнику возле Солнца, замедляется и запаздывает, в сравнении с лучом, идущим вдали от светила. Именно такой эффект замедления радиолуча был реально зафиксирован при радиолокации [26, с. 82]. Однако, этот эффект истолковали как подтверждение теории относительности, дающей то же предсказание, что и БТР, но — из эффекта замедления времени возле Солнца (§ 1.18), хотя обнаружился лишь классический эффект замедления электромагнитных волн в подвижной плазме.
Именно эта, вызванная эффектом Ритца, переменность скорости света, по мере приближения к Солнцу, ведёт к искривлению световых лучей возле него, подобно изгибу лучей в средах с переменным n , скажем, — в миражах. И, точно, лучи звёзд, идя возле Солнца, изгибаются, отчего звёзды видны чуть смещёнными от своих реальных положений (на 1,75»), так же, как в мираже участки неба видны на раскалённом солнцем асфальте, создавая иллюзию луж. Искривление света звёзд отвечало формулам ОТО и считалось подтверждением искривления пространства — тяготением Солнца. Но, те же отклонения в 1,75» предсказывает и теория Ритца, ибо даёт такие же изменения скорости и длины волны света в поле Солнца. Так что, по принципу Оккама надо отдать предпочтение более простой и естественной теории Ритца, созданной раньше теории гравитации Эйнштейна и толкующей искривление лучей света классически, без новых сложных гипотез. Именно в теории Ритца изменение скорости света получается как естественное следствие его баллистического принципа, за счёт движения излучающих атомов в поле тяготения, с вытекающим отсюда искривлением лучей. Тогда как, в общей теории относительности Эйнштейну пришлось ввести дополнительные сложные гипотезы о кривизне пространства и допустить изменение скорости света в гравитационном потенциале, вопреки постулату о постоянстве скорости света — из его же специальной теории относительности. На это обращал внимание известный физик Л. Бриллюэн, отмечавший, что теория Ритца в этом вопросе гораздо более последовательна, чем теория Эйнштейна.
Ещё раз отметим, что соответствие измеренного отклонения световых лучей возле Солнца расчётному отклонению, найденному на основе БТР, ничуть не означает, что Солнце притягивает световой луч. Конечно, свет переносится весомыми частицами — реонами. Однако на эти частицы тяготение не может воздействовать. Реоны, по определению Ритца, распространяются всегда прямолинейно и движутся равномерно, с постоянной по величине и направлению скоростью. Кроме того, тяготение, согласно БТР, имеет электромагнитную природу, а, значит, переносится и вызывается всё теми же реонами и ареонами, которые не взаимодействуют друг с другом и с другими реонами. Поэтому, тяготение не способно само по себе, в чистом вакууме, отклонять лучи света. Происходит лишь переизлучение света в новом направлении атомами подвижной среды возле Солнца. В этом излучении прямой, исконный световой луч, так же как луч, попавший в преломляющую атмосферу Земли, гасится за счёт интерференции, а новорожденный луч просто идёт в ином направлении (§ 1.12). При этом имеет место необратимость излучательных явлений, которой Ритц (а вслед за ним и Бриллюэн) отводил огромную роль в электродинамике.
Таким образом, отклонение, точнее, — переизлучение в новом направлении, имеет место только в подвижной среде, увлекающей свет в направлении тяготеющего тела. А, потому, лишь возле массивных космических тел, удерживающих мощным полем тяготения возле себя протяжённую атмосферу, возможно отклонение световых лучей. Конечно, эти атмосферы весьма разреженны, однако, во-первых, они представляют собой плазму — сильно ионизованный газ, гораздо лучше взаимодействующий с излучением, во-вторых, протяжённость этих атмосфер достаточно велика, чтобы вызвать заметное воздействие на скорость света и отклонение его лучей. Итак, отклонение лучей света вблизи тяготеющих тел получает простое объяснение и в рамках классической физики, стоит лишь принять баллистическую теорию Ритца. Но может ли БТР объяснить другие релятивистские эффекты, связанные с гравитацией?
Источник