Меню

Наиболее удаленная от солнца точка называется фокусом перигелием центром эллипса афелием

Законы Кеплера

Вы уже знаете, что революционная идея Николая Коперника о гелиоцентрической системе мироустройства дала невероятный толчок развитию астрономии. Однако, если вы помните, Коперник в своём учении не отказался от мыслей Аристотеля о «совершенстве» орбит планет. Поэтому для объяснения многих явлений (например, попятного движения планет), в его теории всё ещё присутствовали эпициклы и деференты.

При этом многие учёные считали, что движение небесных тел должно быть равномерным и по «самой совершенной кривой», то есть окружности. Поэтому до конца XVI века им не удавалось точно рассчитать относительное положение планет на несколько лет вперёд. Теория давала заметное расхождение с результатами наблюдений.

Лишь в начале XVII века австрийский астроном Иоганн Кеплер открыл кинематические законы движения планет. В своих поисках он исходил из убеждения, что «в мире правит число», высказанного ещё Пифагором. Кеплер пытался сопоставить характеристики движения планет с закономерностями музыкальной гаммы, длиной сторон, описанных и вписанных в орбиты планет многоугольников и так далее.

Но увы, каждый раз сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признавать, что их реальное поведение не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Джона Холдейна, «идея Вселенной как геометрически совершенного произведения искусства оказалась ещё одной прекрасной гипотезой, разрушенной уродливыми фактами».

Лишь переехав в Прагу и став учеником датского астронома Тихо Браге, Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Во всех своих дальнейших книгах Кеплер подчёркивал, сколь многим он обязан Тихо Браге, его самоотверженному труду во имя науки. Позже был установлен памятник Браге и Кеплеру в Праге.

Браге предложил свою компромиссную «гео-гелиоцентрическую» систему мира, которая представляла собой комбинацию учений Птолемея и Коперника: Солнце, Луна и звёзды вращаются вокруг неподвижной Земли, а все планеты и кометы — вокруг Солнца. Суточное вращение Земли Браге тоже не признавал. С чисто расчётной точки зрения, эта модель ничем не отличалась от системы Коперника, однако имела одно важное преимущество, особенно после суда над Галилеем: она не вызывала возражений у инквизиции. Среди немногочисленных сторонников системы Браге в XVII веке был видный итальянский астроном Риччиоли (у Риччиоли, впрочем, Юпитер и Сатурн обращаются вокруг Земли, а не Солнца).

Прямое доказательство движения Земли вокруг Солнца появилось только в 1727 году ( аберрация света ), но фактически система Браге была отвергнута большинством учёных ещё в XVII веке как неоправданно и искусственно усложнённая по сравнению с системой Коперника-Кеплера.

Представим себе проблему, с которой столкнулся Кеплер, следующим образом. Мы находимся на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, обращается вокруг Солнца по неизвестной нам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Вопрос: как по данным наблюдений, сделанных на одном вращающемся вокруг оси и вокруг Солнца шарике, определить орбиту и скорость движения других планет?

Кажется, что вопрос достаточно сложный, даже при современном уровне компьютеров. А у Кеплера их не было и, тем не менее, ему удалось найти ответ!

Наблюдая за движением Марса в пространстве, а также воспользовавшись многолетними определениями координат и конфигураций этой планеты, проведёнными Тихо Браге, Кеплер обратил внимание на то, что Марс движется неравномерно. Он решил построить орбиту Марса. Для этого он сделал небольшое приближение, посчитав орбиту Земли круговой (что не противоречило наблюдениям). Затем он рассуждал примерно так. Пусть нам известно угловое расстояние Марса (точка М на рисунке) от точки весеннего равноденствия во время одного из противостояний планеты, то есть его прямое восхождение α1.

Т1 — это положение Земли во время противостояния с Марсом.

Для того, чтобы Марс оказался вновь в этой же точке своей орбиты, должно пройти 687 суток (таков звёздный период обращения Марса). Сидерический же период Земли равен 365 суткам. Поэтому, она не успеет «добежать» до точки T1 и в этот момент будет находиться на своей орбите в точке Т2. Следовательно, для наблюдателя измениться прямое восхождение Марса. Так вот раз за разом изучая различные противостояния Марса Кеплер получил целый ряд точек. Соединив их плавной кривой, он построил орбиту этой планеты, которая, как оказалось, не являлась окружностью.

Теперь Кеплер был поставлен перед необходимостью сделать выбор одного из двух возможных решений: считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с наблюдениями; или же считать, что все наблюдения были правильными, а орбита планеты действительно не является окружностью. Будучи уверенным в точности своих наблюдений и наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с кривой, которая называется эллипсом. При этом Солнце располагается не в его центре. В результате им был сформулирован закон, который впоследствии назвали первым законом Кеплера.

Читайте также:  Конспект естествознание старшая группа что такое солнце

Первый закон Кеплера: все планеты обращаются по эллипсам, в одном из фокусов которых находится Солнце.

На рисунке точка О — это центр эллипса, а F1 и F2 — его фокусы. Проходящий через фокусы эллипса отрезок, концы которого лежат на эллипсе, называется его большой осью . А отрезок, проходящий через центр эллипса перпендикулярно большой оси, называется малой осью эллипса . Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях, называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются малыми буквами a и b. Отличие эллипса от окружности характеризуется величиной его эксцентриситета . Он равен половине отношения фокусного расстояния эллипса к его большой полуоси:

Эксцентриситет орбиты — это параметр, характеризующий форму орбиты, которую можно представить одним из конических сечений (круг, эллипс, парабола, гипербола); обозначается латинской буквой e; выражается через отношение большой (a) и малой (b) полуосей орбиты: e 2 =1-b 2 /a 2 . При e=0 орбита круговая, при 0 1 — гиперболическая.

Теперь предположим, что Солнце расположено в фокусе F1. Тогда ближайшая к Солнцу точка орбиты планеты называется перигелием . А наиболее удалённая от Солнца точка, называется афелием .

Например, у земной орбиты эксцентриситет равен 0,017, то есть орбита действительно почти круговая. В перигелии наша планета находится в начале января. Расстояние до Солнца составляет около 147 миллионов километров. Афелий Земля проходит в начале июля, а афелийное расстояние составляет чуть более 152 миллионов километров.

Но вернёмся к Кеплеру и построенной им траектории Марса. Изучив расположения полученных точек, он увидел, что скорость Марса по орбите меняется. Но при этом радиус-вектор планеты (то есть линия, соединяющая центр Солнца с центром планеты ) за равные промежутки времени описывает равновеликие площади. Обнаруженная закономерность впоследствии получила название второго закона Кеплера (иногда его называют законом площадей).

Второй закон Кеплера: радиус-вектор планеты за равные промежутки времени описывает равновеликие площади.

Чтобы лучше понять его физический смысл, вспомните своё детство. Наверняка, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты обращаются вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета.

Объяснить данный закон можно на основе закона сохранения энергии. Из физики вам известно, что полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остаётся неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна в каждой точке орбиты планеты. Приближаясь к Солнцу потенциальная энергия планеты уменьшается, в следствии уменьшения расстояния до Солнца. Поэтому её кинетическая энергия должна увеличиваться. А сделать это можно лишь за счёт увеличения скорости.

Таким образом, скорость движения планеты по орбите меняется, принимая максимальное значение в перигелии и минимальное в афелии.

Первый и второй законы были опубликованы Кеплером в 1609 году в книге «Новая астрономия, или Физика небес, изложенная в исследованиях движения планеты Марс. ». Хотя реально первый закон Кеплера был открыт в тысяча шестьсот пятом 1605 году, а второй — тысяча шестьсот втором 1602. Свой третий закон Кеплер сформулировал лишь в 1618 году.

Третий закон Кеплера: квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Вот что писал по этому поводу сам Кеплер: «То, что 16 лет тому назад я решил искать, наконец найдено, и это открытие превзошло все мои самые смелые ожидания. ».

И действительно, третий закон заслуживает самой высокой оценки. Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя уже известные их периоды обращения вокруг него. При этом не нужно вычислять расстояния от Солнца до каждой планеты, достаточно измерить это расстояние для одной из них, например, Земли. Кстати, для простоты вычислений, величину большой полуоси́ орбиты Земли приняли равной одной астрономической единице (1 а. е.). Эта единица измерения стала основой для вычисления всех остальных расстояний в Солнечной системе.

Читайте также:  Что собирает линза от солнца

Ещё раз обратим ваше внимание на то, что Кеплер открыл свои законы исходя только из собственных наблюдений, и наблюдений Тихо Браге. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведённого им анализа. Если бы вы спросили его об орбитальном движении планет в других звёздных системах, он также не нашёл бы ответа на этот вопрос.

Однако гений Кеплера в том и заключался, что он смог увидеть то, во что остальные отказывались верить. А строгое математическое доказательство его законы получили лишь после того, как Ньютоном были открыты закон Всемирного тяготения и закон сохранения момента импульса (известный нам второй закон Ньютона). Но об этом в следующий раз. А сейчас давайте решим с вами одну небольшую задачку. Определите период обращения астероида Россия, если большая полуось его орбиты равна 2,55 а. е.

Источник

Учебник. Законы Кеплера

В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле.

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства.

Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации – открытию закона всемирного тяготения.

С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринята Птолемеем (

140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.

Условное изображение наблюдаемого движения Марса на фоне неподвижных звезд

Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника. В системе Коперника траектории планет оказались более простыми. Немецкий астроном И. Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы. Кеплер использовал результаты наблюдений за движением планет датского астронома Т. Браге.

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца – афелием. Расстояние между афелием и перигелием – большая ось эллипса.

Эллиптическая орбита планеты массой m

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (1609 г.):

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рис. 1.24.3 иллюстрирует 2-й закон Кеплера.

Закон площадей – второй закон Кеплера

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела p → и его составляющие p → r и p → ⊥ . Площадь, заметенная радиус-вектором за малое время Δt, приближенно равна площади треугольника с основанием rΔθ и высотой r: Δ S = 1 2 r 2 Δ θ или Δ S Δ t = 1 2 r 2 Δ θ Δ t = 1 2 r 2 ω ; ( Δ t → 0 ) .

Здесь ω = Δ θ Δ t ; ( Δ t → 0 ) – угловая скорость (см. §1.6).

Момент импульса L по абсолютной величине равен произведению модулей векторов p → ⊥ и r → :

L = r p ⊥ = r ( m υ ⊥ ) = m r 2 ω , так как υ ⊥ = r ω .

Из этих отношений следует: Δ S Δ t = L 2 m ; ( Δ t → 0 ) .

Поэтому, если по второму закону Кеплера Δ S Δ t = const, то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии υ → P и афелии υ → A направлены перпендикулярно радиус-векторам r → P и r → A , из закона сохранения момента импульса следует: rPυP = rAυA.

Третий закон Кеплера (1619 г.):

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

T 2 a 3 = const или T 1 2 a 1 3 = T 2 2 a 2 3 .

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.

На рис. 1.24.4 изображены две орбиты, одна из которых – круговая с радиусом R, а другая – эллиптическая с большой Третий закон утверждает, что если R = a, то периоды обращения тел по этим орбитам одинаковы.

Читайте также:  Определите сколько времени понадобится чтобы свет излученный солнцем достиг венеры юпитера считать

Круговая и эллиптическая орбиты. При R = a периоды обращения тел по этим орбитам одинаковы Законы Кеплера

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном, открывшим в 1682 году закон всемирного тяготения: F = G M m r 2 , где M и m – массы Солнца и планеты, r – расстояние между ними, G = 6,67ċ10 –11 Нċм 2 /кг 2 – гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T 2

R 3 , где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца: F

ω 2 R = ( 2 π ) 2 R T 2 .

Свойство консервативности гравитационных сил (см. §1.10) позволяет ввести понятие потенциальной энергии. Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m, находящегося на расстоянии r от неподвижного тела массы M, равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Вычисление потенциальной энергии тела в гравитационном поле

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам. Работа Δ A i гравитационной силы F → на малом перемещении Δ s → i = Δ r → i есть: Δ A i = — G M m r i 2 Δ r i .

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ ΔAi на малых перемещениях: A r ∞ = ∑ r ∞ Δ A i .

В пределе при Δri → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение E p = A r ∞ = — G M m r .

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость υ, его полная механическая энергия равна E = E k + E P = m υ 2 2 — G M m r = const.

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E1 rmax. В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Диаграмма энергий тела массой m в гравитационном поле, создаваемом сферически симметричным телом массой M и радиусом R

При E = E2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории.

При E = E3 > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

m υ 1 2 R З = G M m R З 2 = g m , отсюда υ 1 = G M R З = g R З = 7,9 ċ 10 3 м/с.

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

E = m υ 2 2 2 — G M m R З = 0, отсюда υ 2 = 2 G M R З = 2 g R З = 11,2 ċ 10 3 м / с.

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ1 = 7.9ċ10 3 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ1, но меньших υ2 = 11,2ċ10 3 м/с, орбита корабля будет эллиптической. При начальной скорости υ2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

траектория; 2: υ1 3 м/с – сильно вытянутый эллипс; 4: υ = υ2 – параболическая траектория; 5: υ > υ2 – гиперболическая траектория; 6: траектория Луны

Источник

Adblock
detector