Меню

Направленного роста растений космосе

Ученые разработают конвейерную оранжерею для выращивания овощей на МКС

Москва. 10 декабря. INTERFAX.RU — Институт медико-биологических проблем (ИМБП) РАН работает над созданием космической оранжереи, говорится в материалах к конференции по аэрокосмической и экологической медицине.

«В 2018 году по техническому заданию РКК «Энергия» запланировано изготовление филиалом ОРКК-НИИ КП совместно с ГНЦ РФ ИМБП РАН опытного образца витаминной космической оранжереи «Витацикл-Т», — отмечается в тексте.

Космическая оранжерея предназначена для экспериментальной отработки режимов конвейерного выращивания салатных растений на российском сегменте МКС. Расчетная производительность космической оранжереи «Витацикл-Т», равная 45 г салатной биомассы в сутки, позволит обеспечить потребности одного члена экипажа в витаминах С и А и частично — в витаминах группы В и грубых пищевых волокнах.

«В настоящее время в ИМБП РАН начаты работы, направленные на создание производственного модуля космической оранжереи для конвейерного выращивания моркови с производительностью 70 г/сутки, а также на разработку интеллектуального светодиодного светильника для автоматического определения оптимальных режимов освещения посевов различных растений в космической оранжерее», — сообщается в материалах. В них отмечается, что результаты этих работ потребуют дальнейшей проверки на МКС и, возможно, на последующем варианте российской околоземной орбитальной станции.

«В будущем разработанные конструкции и технологии для космической оранжереи могут обеспечить проектную базу для создания производственной оранжерей в составе комплекса системы жизнеобеспечения для орбитальной окололунной станции и пассажирского марсианского корабля», — говорится в материалах.

Источник

Космические грядки: что и зачем выращивают в космосе?

Люди давно мечтали о космических полетах, о покорении вселенной, о путешествиях по дальним галактикам. Но в любое дальнее путешествие с собой нужно брать большой набор продуктов. А если полёт планируется на годы? А может дальше и дольше?
У учёных родилась идея — создать на космическом корабле оранжерею, которая будет обеспечивать путешественников не только овощами и фруктами, но и кислородом, и водой… Легко придумать, а как реализовать?

Космический конус Циолковского

Первым идею — выращивать растения в космосе — выдвинул основоположник космонавтики Константин Циолковский. Задолго до начала пилотируемых полетов он заявил, что в будущем растения станут главным источником питания и поддержания атмосферы на космических кораблях. Он придумал и сделал зарисовку, как можно решить проблему невесомости и отсутствия гравитации в условиях космоса.

«Вообразим себе длинную коническую поверхность или воронку, основание или широкое отверстие которой прикрыто прозрачной шаровой поверхностью. Она прямо обращена к Солнцу, а воронка вращается вокруг своей длинной оси (высоты). На непрозрачных внутренних стенках конуса — слой влажной почвы с насаженными в ней растениями».

К.Э. Циолковский «Цели звездоплавания» 1929 год

В этой работе К. Э. Циолковский подробно описал не только, как можно искусственно создать гравитацию для растений, но и продумал, какие это должны быть растения: плодовитые, мелкие, без толстых стволов. По его задумке такие растения смогут обеспечивать колонизаторов космоса биологически активными веществами и микроэлементами, а также регенерировать кислород и воду.

За много десятилетий до полётов в космос Константин Эдуардович понял проблему с которой в будущем столкнулись космонавты — от консервированной и сублимированной пищи многие из них теряли аппетит, начиналась депрессия и ели только потому, что это было необходимо для поддержания сил.

Первым обратил на это внимание норвежский биолог Силе Вольф, который не мог найти логичного объяснения — почему космонавты в полёте часто теряют в весе. А причина оказалась проста — недостаток аппетита.

На орбите — горох и пшеница

Самые первые растения, которые побывали в космосе — это кукуруза, пшеница, горох и лук. Впервые семена этих растений поднялись на орбиту Земли в августе 1960 года — семьдесят лет назад. Этот полёт был во много необычным. Он известен, как полёт знаменитых собак Белки и Стрелки, которые не только побывали в космосе, но и благополучно вернулись на землю. Но далеко не все знают, что вместе с двумя собаками в этом полёте побывали сорок мышей, две крысы и семена растений.

Первое растение, выращенное и съеденное в космосе — это обычный зелёный лук. Это произошло в 1978 году на космической станции «Салют-4». Космонавтам Владимиру Ковалёнку и Александру Иванченкову удалось вырастить перья лука в установке «Оазис».

Читайте также:  Пилотируемые полеты космос международная научно практическая конференция

Эксперимент предусматривал не только вырастить растение, но и добиться процесса цветения и получение семян. Центральный пункт управления полётами разрешил срезать несколько перьев лука, чтобы он не гнил. Только позже стало известно, что часть лука космонавты съели без разрешения начальства — таким сильным было желание настоящей растительной пищи. Сейчас эта установка «Оазис-1» находится в Мемориальном музее космонавтики.

Безусловно, первые установки для выращивания растений в космосе были не совершенны. Их постоянно дорабатывали, модернизировали, придумывали новые: «Оазис»,»Вазон», «Лютик» и другие установки сначала проходили испытания на Северном полюсе, потом отправлялись в космос, но результаты каждый раз были непредсказуемыми…

Вот только один случай, описанный космонавтом Георгием Гречко в книге «Космонавт № 34». Гидропонная установка была без земли, и горошины прорастали в марле с водой и раствором. Космонавт заметил, что в одной кювете воды почти нет, а в другой — слишком много и горошины начали подгнивать. Воды во второй кювете было так много, что капли срывались и плавали по всей станции.
В итоге космонавт несколько часов собирал летающие капли салфеткой, Потом поливал горошины вручную. И едва не погубил весь эксперимент. Он решил, что ростки запутались в марле, и стал руками разбирать их. В итоге выяснилось, что он перепутал корешки и стебельки.

Эксперимент закончился благополучно — космонавту удалось добиться полного цикла: от семечка до взрослого стебля. Но из 36 зерен гороха, которые были в установке «Оазис», взошли и выросли только три.

Космические сады

1971 год

Мало кто знает — первый космический сад уже есть. Правда он существует не в космосе, а на Земле. Он был создан через восемь лет после выхода фильма — в 1971 году, когда на корабле «Аполлон-14» в космическое путешествие отправились семена пяти хвойных и лиственных пород: сосна, пихта, секвойя, платан и ликвидамбар. Эти семена не просто побывали в космосе, но вместе с астронавтом Стюартом Руса на командном модуле облетели вокруг Луны.

Когда «Аполлон-14» вернулся на Землю, семена высадили и получилось 450 саженцев, которые разослали по всему миру. Несколько растений специально были высажены рядом со своими собратьями и ровесниками. Прошли годы. «Лунные» деревья выросли и уже ничем не отличаются от своего окружения.

1980 год

Советские учёные разработали и отправили в космос установку для выращивания растений «Малахит». Перед ними была поставлена задача — чтобы в космосе цвели орхидеи. Эти цветы были выбраны неслучайно. Известно, что они прекрасно растут на створах деревьев, в самых неблагоприятных условиях. Орхидеи отправили на станцию уже цветущими. К сожалению, эксперимент не удался, лепестки опали, но листья и воздушные корни продолжали благополучно развиваться…

Что только не придумывали учёные, чтобы помочь растениям справиться с невесомостью и зацвести! Они стимулировали корневую систему электромагнитными волнами и создавали центрифуги, наподобие той, что была описана К.Э. Циолковским.

1982 год

Добиться цветения удалось только во время полёта космической станции «Салют-6», которая была выведена на орбиту в 1977 году и вернулась на землю в 1982 году. Именно в этом полёте (на космической станции за пять лет сменилось пять экипажей) удалось добиться невозможного. В установке «Светоблок» зацвёл арабидопсис.

Это скромное растение с мелкими белыми цветами ещё называют резуховидка Таля, и она является родственницей горчицы и обычной капусты. Она не просто расцвела на космической станции, но и дала семена. Впервые в космосе прошёл полный цикл развития растения: от семян до семян!

Это чудо удалось осуществить благодаря бортовой оранжерее «Светоблок», в которой учёные соединили систему дозированного полуавтоматического полива, аэрации и электрического стимулирования корней, а также перемещение вегетационных сосудов с растениями относительно источника света.

2000 год

На космическую станцию была отправлена первая в мире автоматическая оранжерея. С её помощью космонавты в рамках эксперимента вырастили салаты, редис и пшеницу. Но настоящий прорыв произошел в 2014 году. На американской космической станции астронавтам в автоматической плантации удалось вырастить зелень не для опытов, а для обогащения рациона питания.

Читайте также:  Договор по космосу подписали

С тех пор космические путешественники могут питаться свежими салатами, и добавлять лук, петрушку, укроп и сельдерей в другие блюда. Нужно только помнить, что питание на орбите — процесс специфический и мало напоминает земное застолье.

Какие растения выращивают на космическом огороде?

Картофель, морковь, свёкла и помидоры — привычные овощи и корнеплоды наших огородов ещё не скоро доберутся до космических просторов. Им требуется много земли и особые условия. Поэтому жареной картошечкой на орбите космонавты не смогут себя побаловать ещё пару десятилетий.

Так что же растёт на грядках в космосе?

На первом месте японская салатная капуста Мизуна — родственница нашего салата «Русалочка». Она осваивает космическое пространство уже более двадцати лет и восполняет витамины в организме космонавтов.

На втором месте — карликовый горох. Он поразил космонавтов: горох давал жизнеспособные семена пять раз подряд. Их снова и снова отправляли в космическую оранжерею и он благополучно рос, цвел и плодоносил. Поколение за поколением!

На третьем месте — пшеница, которая тоже несколько раз давала семена в космосе: и на станции «Мир», и на международной космической станции (МКС).

На четвертом месте — обычная редиска. После долгих экспериментов удалось выбрать сорт, который наиболее хорошо чувствует себя на орбите. Это редис сорта «Cherry bomb», который успешно формируют корнеплоды даже в невесомости!

Можно ли вырастить урожай без земли?

Космические технологии, основа которых зародилась еще на Земле, доказывают, что многие растения прекрасно растут и развиваются вовсе без почвы. Идея не нова. Считается, что впервые она была предложена ещё в начале 17 века английским философом, политиком, экономистом Френсисом Бэконом.

Пришли столетия. Сегодня существуют две основные методики выращивания растения в космосе без почвы:

  • Гидропоника — растения получают питательные вещества из субстрата, пропитанного водой.
  • Аэропоника — когда корни оголены, а рядом установлены распылители, которые время от времени обволакивают корни легкой дымкой из крохотных капель питательного раствора.

«Космические растения живут в специальной оранжерее с искусственным субстратом. Она снабжена автоматическим поливом: там стоят датчики влажности, которые проводят измерения через определённые промежутки времени. Система сама подсчитывает, сколько воды нужно добавить, и сама поливает. При этом в поливную воду ничего не добавляется: питаются растения за счёт удобрений пролонгированного действия, внесённых в субстрат.
С невесомостью «зелёные космонавты» справляются так: корни удерживаются субстратом, а надземные части всегда тянутся к искусственному свету».

Маргарита Левинских, доктор биологических наук, ведущий научный сотрудник ГНЦ РФ «Институт медико-биологических проблем»

Но и это — не окончательный вариант! Прообраз огромной космической оранжереи уже построен на немецкой антарктической станции «Neumayer-Station III», где учёные Института полярных и морских исследований им. Альфреда Вегенера выращивают огурцы, помидоры, сладкий перец и зелень. Это ещё раз подтверждает — все космические технологии берут своё начало на Земле.

Человечество готовится к дальним космическим путешествиям. А успех любой экспедиции на 99 процентов зависит от её подготовки. Поэтому нужно набраться терпения, и ждать когда «на Марсе будут яблони цвести»!

Источник

Как растения растут в состоянии невесомости?

Гравитация неотъемлема для всех организмов на Земле. Она влияет на каждый аспект нашей физиологии, поведения и развития — независимо от того, что вы такое, вы развиваетесь в среде, которая тесно уходит гравитационными корнями в землю. Но что произойдет, если вы откажетесь от привычной среды и окажетесь в ситуации за пределами эволюционного опыта? Биологи, выращивающие растения в лаборатории, частенько задаются таким вопросом. Эксперименты начинаются на земле, но постепенно переходят в космос. Что может быть новее для растения, чем условия микрогравитации в космосе?

Изучая, как растения реагируют на жизнь в космосе, мы можем узнать больше о том, как они приспосабливаются к изменениям окружающей среды. Растения не только имеют важное значение для земной жизни; они также могут быть важными для нашего освоения Вселенной. Пока мы готовимся к будущей колонизации, нам важно понять, как наши растения могут приспособиться к жизни на других планетах, ведь именно они могут стать неизменным источником еды, воды и воздуха для будущих колонистов.

Читайте также:  Развитие речи про космос подготовительная группа

Таким образом, даже пока мы находимся на земле, на борту той же Международной космической станции исследования идут полным ходом. Они уже преподнесли нам несколько сюрпризов на тему роста в условиях микрогравитации и изменили наше мышление о росте растений на Земле.

Учиться безмятежности растений

Однако растения могут изменить «внутреннюю среду», и растения — мастера по манипуляциям со своим метаболизмом, который помогает им справиться с пертурбациями окружения. По этой причине мы и используем растения в своих исследованиях; мы можем рассчитывать на них как на чувствительных репортеров экологических изменений, даже в относительно новых условиях вроде космического полета.

Людям было интересно, как растения реагируют на космический полет, ровно с того момента, как у нас появилась возможность туда отправиться.

Пока на Земле изучают растения, сами растения находятся в космосе

Космический полет требует специальных камер для роста, специальных инструментов для наблюдения и сбора образцов и, конечно, специальных людей, которые позаботятся о проведении эксперимента на орбите.

После стыковки астронавт загружает чашки в оборудование для выращивания растений. Свет стимулирует семена раскрыться, камеры постоянно записывают процесс всхода ростков, и в конце эксперимента астронавт собирает 12-дневные растения и сохраняет их в консервационных тубах.

По возвращении на Землю мы можем сколько угодно экспериментировать с сохраненными образцами, изучать их уникальные процессы метаболизма, которые протекали на орбите.

Собирая плоды

В 1880 году Чарльз Дарвин показал, что когда вы выращиваете растения вдоль наклонной поверхности, корни растут из семян не прямо, а скорее отклоняются в одну сторону. Эта стратегия роста называется «перекосом». Дарвин предположил, что причина тому — сочетание гравитации и касания корней — и 130 лет все остальные тоже так считали.

Но корни выросли с перекосом и без гравитации. В 2010 году мы увидели, что корни растений, выращенных на МКС, преодолели весь путь по поверхности чашки Петри с идеальным перекосом корней — без какой-либо гравитации. Это было сюрпризом. Очевидно, не гравитация стоит за паттерном роста корней.

У растений на МКС есть второй потенциальный источник информации, от которого они могли отталкиваться: свет. Мы предположили, в отсутствие силы тяжести, которая могла бы указать корням расти в направлении «прочь» от листьев, свет играет большую роль в ориентации корней.

Выяснилось, что да, свет очень важен, но не только свет — должен быть градиент интенсивности света, тогда он будет выступать в качестве ценного руководства. Представьте его как хороший запах: вы можете с закрытыми глазами найти на кухне источник запаха, если духовка с печеньем только открылась, но если весь дом будет в равной степени утоплен в аромате шоколадного печенья, вы вряд ли его найдете.

Настройка метаболизма на лету

Светящиеся растения позволяют нам узнать, какие гены активны, поэтому мы можем сказать, какие белки производятся.

Мы отслеживаем изменения экспрессии генов в режиме реального времени, отмечая конкретные белки флуоресцентной меткой. Растения с добавлением светящихся флуоресцентных белков могут «рассказывать» о том, как реагируют на свое окружение. Такие инженерские растения выступают как биологический сенсор — «биосенсор», если коротко. Специальные камеры и микроскопы позволяют нам наблюдать за тем, какое применение растение находит этим флуоресцентным белкам.

Взгляд из космоса

Такого рода исследование дает нам новое понимание того, как растение воспринимает и реагирует на внешние раздражители на фундаментальном, молекулярном уровне. Чем больше мы узнаем о том, как растение реагирует на новые и экстремальные условия, тем больше мы знаем о том, как растение будет реагировать на изменение условий и здесь, на Земле.

Конечно же, наши исследования в этой области вносят вклад в коллективные усилия по выведению биологии за пределы планеты. Тот факт, что гравитация не так важна для растений, как мы когда-то считали, это приятная новость для перспектив разведения культур на других планетах с низкой гравитацией и даже на кораблях вообще без гравитации. Люди готовы покинуть планету, и когда мы покинем орбиту Земли, будьте уверены, с нами будут растения.

Источник

Adblock
detector