«Бактерии Шрёдингера»: чудо квантовой биологии?
Квантовый мир весьма странный. В теории, да и на практике, до определенной степени, принципы квантового мира требуют, чтобы частица могла оказываться в двух местах одновременно — это парадоксальное явление известно как суперпозиция — и чтобы две частицы могли «запутываться», обмениваясь информацией через сколь угодно большие расстояния. Как именно — никто не знает в точности. Самым известным примером странности квантового мира можно назвать кота Шрёдингера, мысленный эксперимент, проведенный Эрвином Шрёдингером в 1935 году.
Бактерии бывают разными.
Австрийский физик мысленно поместил кота в ящик с потенциально смертельным радиоактивным веществом. Странные законы квантовой механики позволяли коту существовать в суперпозиции двух состояний — одновременно живому и мертвому — по крайней мере, до тех пор, пока ящик не будет вскрыт и его содержимое — обнаружено.
Тайны квантового мира
При всей странности, эта концепция была экспериментально подтверждена бесчисленное количество раз в квантовых масштабах. Но при масштабировании до нашего, так сказать, более простого и понятного макроскопического мира, все меняется. Никто пока не видел звезду, планету или кота в суперпозиции или в состоянии квантовой запутанности. Но с тех пор, как квантовая теория была впервые сформулирована в начале 20 века, ученые задавались вопросом, где именно пересекаются микроскопический и макроскопический миры? Насколько большой может быть квантовая реальность и будет ли она когда-нибудь достаточно большой, чтобы ее самые странные аспекты можно было тесно увязать с живыми существами? В течение последних двух десятилетий появившаяся область квантовой биологии искала ответы на эти вопросы, предлагая и проводя эксперименты над живыми организмами, которые могли бы помочь нащупать пределы квантовой теории.
Эти эксперименты уже принесли интересные, но неубедительные результаты. В начале этого года, например, ученые показали, что процесс фотосинтеза — когда организмы производят пищу, используя свет — может включать некоторые квантовые эффекты. Навигация птиц или наше обоняние также говорят о том, что квантовые эффекты могут проявляться у живых существ самым необычным образом. Но это лишь самый кончик айсберга квантового мира. До сих пор никому не удавалось заставить целый живой организм — даже не одноклеточную бактерию — проявить квантовые эффекты, такие как запутанность или суперпозиция.
И вот, новая работа ученых Оксфордского университета заставляет некоторых удивленно поднять брови: в ней они пишут, что им удалось успешно запутать бактерий с фотонами — частицами света. Исследование, проведенное квантовым физиком Кьярой Марлетто и опубликованное в октябре в Journal of Physics Communications, представляет собой анализ эксперимента, проведенного в 2016 году Дэвидом Коулсом из Университета Шеффилда и его коллегами. В том эксперименте Коулс и компания разместили несколько сотен фотосинтезирующих зеленых серных бактерий между двумя зеркалами, постепенно сокращая промежуток между зеркалами до нескольких сотен нанометров — меньше, чем ширина человеческого волоса. Пропуская белый свет через зеркала, ученые надеялись, что фотосинтетические молекулы в бактериях образуют пары — или будут взаимодействовать — с пустотой, то есть бактерии будут непрерывно поглощать, испускать и заново абсорбировать прыгающие фотоны. Эксперимент был успешным. Около шести бактерий образовали пары по этому признаку.
Марлетто и ее коллеги утверждают, что бактерии не только образовали пару с полостью. В своем анализе они продемонстрировали, что энергетические сигнатуры, полученные в ходе эксперимента, могут быть совместимы с фотосинтезирующими системами бактерий, запутанных со светом в полости. По сути, кажется, что некоторые фотоны одновременно поражали и пропускали фотосинтетические молекулы внутри бактериях — это было отличительным признаком запутывания.
«Наши модели показывают, что это явление можно считать сигнатурой запутанности между светом и определенными степенями свободы внутри бактерий», говорит она.
По словам соавтора исследования Тристана Фарроу, который также из Оксфорда, впервые это явление было замечено в живом организме. «Это определенно ключ к доказательству того, что мы каким-то образом движемся в сторону идеи «бактерий Шрёдингера», так сказать», говорит он. И это намекает на другой потенциальный случай проявления квантовой биологии в естественной среде: зеленые серобактерии обитают в глубоком океане, где дефицит живительного света может стимулировать квантово-механические эволюционные адаптации для разгона и поддержания фотосинтеза.
У таких спорных заявлений есть, впрочем, множество подводных камней. Прежде всего, доказательство запутывания в таком эксперименте будет косвенным, зависящим от того, как наблюдатель решает интерпретировать свет, протекающий сквозь и вытекающий из ограниченных полостью бактерий. Марлетто и ее коллеги признают, что классическая модель, свободная от квантовых эффектов, также могла бы объяснить результаты этого эксперимента. Но, конечно, фотоны не являются классическими вовсе — они квантовые. И все же более реалистичная «полуклассическая» модель, использующая законы Ньютона для бактерий и квантовые законы для фотонов, не может воспроизвести результаты, полученные Коулсом и его коллегами в лаборатории. Это указывает на то, что квантовые эффекты проявляются как для света, так и для бактерий.
Микроскопические формы жизни порой имеют самые причудливые формы.
Другой подводный камень: энергии бактерий и фотона измерялись совместно, а не по отдельности. Это, по словам Саймона Грёблахера из Технологического университета Делфта в Нидерландах, который не принимал участия в исследовании, является некоторым ограничением. «Может показаться, что происходит что-то на квантовом уровне», говорит он. «Но… обычно, когда мы демонстрируем запутанность, мы измеряем две системы независимо», чтобы подтвердить, что любые квантовые корреляции между ними будут подлинными.
Несмотря на эти неопределенности, для многих экспертов квантово-биологический переход от теоретической мечты к реальности, которую можно пощупать, это не вопрос возможности — это вопрос времени. По отдельности и коллективно молекулы за пределами биологических систем уже проявили квантовые эффекты в лабораторных экспериментах, проведенных за десятки лет, поэтому поиск этих эффектов среди молекул внутри бактерий или вообще наших тел кажется не лишенным смысла. В организмах людей и других многоклеточных существ, впрочем, такие молекулярные квантовые эффекты было бы трудно заметить, но у крошечных бактерий — почему бы и нет? «Это приятное открытие, хоть и ожидаемое», говорит Грёблахер. «Но оно определенно будет сюрпризом, если продемонстрировать его на примере реальной биологической системы».
Несколько исследовательских групп, возглавляемых в том числе Грёблахером и Фарроу, надеются разработать эти идеи еще больше. Грёблахер разработал эксперимент, который мог бы поместить крошечное животное — тихоходку — в состояние суперпозиции. Это будет намного сложнее, чем запутывание бактерий со светом из-за сравнительно большого размера тихоходок. Фарроу рассматривает способы улучшить эксперимент с бактериями; в следующем году он и его коллеги надеются запутать двух бактерий вместе, не трогая свет.
«Речь идет о понимании природы реальности и о том, имеют ли квантовые эффекты роль в биологических функциях. Глубоко в корне вещей все является квантовым».
Может быть так, например, что «естественный отбор придумал способы для живых систем естественным образом использовать квантовые явления», отмечает Марлетто, приводя в пример вышеупомянутый фотосинтез серобактерий в глубоком море. Но для этого нужно начинать с малого. В ходе недавнего эксперимента был успешно запутан миллион атомов. Конечно, это мизер даже по сравнению с бактериями. Но если подход снизу-вверх сработает, однажды нас ждет запутанные на макроскопическом уровне существа, предметы и даже люди.
Как думаете, это возможно? Расскажите в нашем чате в Телеграме.
Источник
Мне иногда кажется, что мы микробы, что вся вселенная это просто пыль на машине какого человека
2 Суета сует, сказал Екклесиаст, суета сует, — все суета! 3 Что пользы человеку от всех трудов его, которыми трудится он под солнцем? 4 Род проходит, и род приходит, а земля пребывает во веки. 5 Восходит солнце, и заходит солнце, и спешит к месту своему, где оно восходит. 6 Идет ветер к югу, и переходит к северу, кружится, кружится на ходу своем, и возвращается ветер на круги свои. 7 Все реки текут в море, но море не переполняется: к тому месту, откуда реки текут, они возвращаются, чтобы опять течь. 8 Все вещи — в труде: не может человек пересказать всего; не насытится око зрением, не наполнится ухо слушанием. 9 Что было, то и будет; и что делалось, то и будет делаться, и нет ничего нового под солнцем. 10 Бывает нечто, о чем говорят: «смотри, вот это новое»; но [это] было уже в веках, бывших прежде нас. 11 Нет памяти о прежнем; да и о том, что будет, не останется памяти у тех, которые будут после. 12 Я, Екклесиаст, был царем над Израилем в Иерусалиме; 13 и предал я сердце мое тому, чтобы исследовать и испытать мудростью все, что делается под небом: это тяжелое занятие дал Бог сынам человеческим, чтобы они упражнялись в нем. 14 Видел я все дела, какие делаются под солнцем, и вот, все — суета и томление духа! 15 Кривое не может сделаться прямым, и чего нет, того нельзя считать. 16 Говорил я с сердцем моим так: вот, я возвеличился и приобрел мудрости больше всех, которые были прежде меня над Иерусалимом, и сердце мое видело много мудрости и знания. 17 И предал я сердце мое тому, чтобы познать мудрость и познать безумие и глупость: узнал, что и это — томление духа; 18 потому что во многой мудрости много печали; и кто умножает познания, умножает скорбь.
Выслушаем сущность всего: бойся Бога и заповеди Его соблюдай, потому что в этом все для человека; 14 ибо всякое дело Бог приведет на суд, и все тайное, хорошо ли оно, или худо.
Источник
Бактерии управляют сознанием людей: миры внутри нас
Наука о микробиоме
Мы не знаем, одинок ли человек во Вселенной. Но хорошо известно то, что он не одинок даже наедине с собой. И не просто не одинок. В каждом из нас живет как минимум 100 триллионов живых существ — как полезных, так и вредных, а их общий вес достигает 3–4 килограммов. Большинство из них обитает в нашем кишечнике, но есть и такие, что прижились у нас в носу, на руках, глазах, ушах, на коже — в общем, в каждом уголке нашего тела. И от того, кто поселился в нас в данный момент, зависят и наше здоровье, и настроение, и вес, и даже способность мыслить здраво.
В последние годы ученые всего мира ведут исследования в области микробиома (так называют сообщество бактерий, считающих наш организм своим домом) — и чуть ли не каждый день делают удивительные открытия. Их цель — заставить бактерии служить нашему здоровью, то есть спасать нас от множества болезней — от диареи до сахарного диабета. Что нового здесь происходит, узнал обозреватель «МК».
Нашим мозгом управляют бактерии
Микрофлора, она же микробиота, — это множество одноклеточных микроорганизмов, живущих как на нас, так и поблизости. Невероятно, но факт: бактерий, живущих в нас, в десятки раз больше количества клеток, из которых состоит наш организм! То есть человек — это не совсем человек, а всего лишь скопище живущих своей жизнью микроорганизмов. Но самое главное — ученые признали, что былые представления об одноклеточных микроорганизмах оказались ошибочными. Эта незримая армия влияет на все сферы нашей жизни: могут сделать нас умными или глупыми, здоровыми или больными, веселыми или печальными. И даже вкусными или невкусными для комаров — да-да, за эту индивидуальную особенность также отвечают микробы, обитающие на коже!
В нашем желудочно-кишечном тракте живет 300–400 видов бактерий — это из тех, что идентифицировали ученые. Правда, пока светила науки не знают, что делает большинство из этих тварей — изучено буквально несколько десятков особей. Однако сегодня установлено, что если в среде этих маленьких жителей происходит какой-то дисбаланс, то есть одних становится больше, а других меньше, развиваются болезни: аллергии, заболевания печени, поджелудочной железы, артрит, аутизм, депрессия и даже рак. Так, международная группа ученых выяснила, что у большинства пациентов с болезнью Альцгеймера серьезный дисбаланс кишечной микрофлоры. Практически аналогичная ситуация у детей с аутизмом.
Микробиом влияет буквально на все стороны нашей жизни. Вредоносные бактерии ведут к развитию болезней. Полезные защищают нас от патогенных микробов, обезвреживают токсины, производят необходимые витамины и гормоны, помогают усваиваться важным микроэлементам из пищи.
От состава микробиома зависит даже склонность человека к ожирению. Да и так называемый эмоциональный интеллект (EQ — способность человека правильно понимать собственные и чужие эмоции и, как следствие, управлять ими) напрямую зависит от царства бактерий, живущих в кишечнике. «Их больше, чем звезд в галактике, и у каждого есть право голоса. Именно микробиота регулирует работу головного мозга», — говорит известный детский доктор, завкафедрой факультетской педиатрии №2 РНИМУ им. Н.И.Пирогова, научный руководитель Московского городского центра иммунологии и аллергологии профессор Андрей Продеус. Бактерии способны менять поведение человека и даже внушать желания, заставляя нас играть под их дудку. Например, есть сладкое. Это раньше считалось, что есть сладкоежки от природы, а теперь установлено: тяга к пирожным-мороженому зависит от того, есть ли в вашем кишечнике бактерии под названием клостридии. Они питаются простыми сахарами и выманивают их у нас, заставляя есть шоколад и печеньки. Или помните про йогурты, от которых «животик улыбается»? Сегодня ученые на полном серьезе говорят о том, что содержащиеся в йогуртах бактерии могут делать нас как умиротворенными, так и унылыми, ведь некоторые бактерии подавляют уровень гормона счастья серотонина, что установлено учеными из APC (Alimentary Pharmabiotic Centre). И не только нас, но и других животных. Недавний эксперимент на мышах, проведенный в Италии, показал, что норушки, рожденные в стерильных условиях (то есть лишенные естественной микрофлоры) оказались тупыми и агрессивными, а также отличались девичьей памятью.
Кто в домике живет?
В нашем кишечнике обитают представители царства архей — одноклеточные организмы. В основном это метаногены — они легко обходятся без кислорода, помогают переваривать пищу и выделяют газ метан.
В кишечнике, а также в интимных зонах живут эукариоты (грибки и дрожжи) и бактерии. Одна из самых известных бактерий — кишечная палочка (эшерихия коли). Раньше считалось, что она ведет к нарушениям стула, но сегодня известно, что есть разновидности этой бактерии, которые приносят нам исключительно пользу. Или взять хеликобактер пилори — в больших количествах она вызывает язву и рак желудка, но в небольших необходима для пищеварения.
На коже живет великое разнообразие бактерий — они отвечают за наш запах, за привлекательность для комаров. Удивительный факт: сообщество бактерий на правой руке кардинально отличается от сообщества бактерий на левой. Объяснения этому пока нет. Зато ученые уже предлагают вводить микробные отпечатки пальцев, которые у каждого из нас уникальны.
Популярный обитатель носа — золотистый стафилококк. Пока известны только его зловредные свойства, но ученые предполагают, что другие носовые микробы в большинстве случаев не дают ему развернуться.
Во рту живет стрептококк мутанс — установлено, что именно он подтачивает наши зубы и вызывает кариес. В целом же бактерии из ротовой полости помогают регулировать кровяное давление — они выделяют оксид азота, тем самым расслабляя артерии.
Микробиом на службе здоровью
Наука о микробиоме развивается стремительно, открытия в ней делают чуть ли не каждый день. Сегодня в эту область инвестировано почти 1,5 млрд долларов. Ведь это раньше микробы считались источником заболеваний, а теперь ясно, что они играют важную роль не только в развитии болезней, но и в поддержании здоровья.
Предполагается, что уже в скором времени с помощью микробиома научатся лечить более 50 разных хворей, включая сахарный диабет, воспалительные заболевания кишечника, атеросклероз, дерматит, астму, непереносимость лактозы, иммунодефицит и колоректальный рак. «Исследования показывают, что медицинские решения, основанные на микробиоме, потенциально могут оказать положительное влияние на все аспекты здоровья человека и помочь вылечить людей по всему миру. Наш институт ведет исследования с целью объяснить уникальную и очень важную роль, которую играет микробиота. Мы вдохновлены безграничными возможностями, которые микробиом дает для прогнозирования, диагностики и лечения множества заболеваний, в том числе за счет использования естественных реакций организма», — говорит руководитель самого крупного Института микробиома человека (JHMI) Дирк Геверс.
Ученые из JHMI изучают, как микробиом меняется под воздействием генетических факторов, факторов среды, питания и пр. Это поможет понять, как заставить маленьких обитателей нашего организма служить его здоровью. Совместно с Научно-исследовательским институтом имени Вейцмана (Израиль) американские исследователи из JHMI изучают, как состав микробиома влияет на метаболические расстройства и как может помочь в лечении нарушений обмена веществ. Предполагается разработать рекомендации по питанию, которые помогут предотвращать развитие метаболического синдрома, сахарного диабета второго типа и его осложнений. Исследователи изучают микробиомы различных людей, пробуют на них новые лекарства. «Совместными усилиями мы выработаем новые идеи для решения проблем обмена веществ с помощью микробиологической диагностики и терапии», — сказал Дирк Геверс.
Кое-что уже придумано. Например, разработаны коктейли с микроорганизмами и бактериофагами, поддерживающие здоровье микробиома. Лекарства, способные увеличивать количество одних бактерий и подавлять других. Диагностические тесты, определяющие причины болезней по составу микрофлоры. Вакцины, исправляющие реакцию иммунной системы на изменения в микробиоме.
Все это позволит лечить болезни более прицельно, воздействуя на причины болезней на генетическом уровне.
Как вылечить свою микрофлору
В JHMI отмечают, что состав и разнообразие микробного сообщества напрямую зависят от питания, приема лекарств и других внешних факторов. И даже такие простые вещи, как изменение образа жизни, системы питания или прием микробных коктейлей способны вылечить или предотвратить болезнь.
Исследования ученым в помощь. Недавно вот департамент генетики медицинского центра Университета Гронингена выяснил, что как минимум 60 категорий продуктов и различные типы диет оказывают то или иное влияние на кишечную микрофлору. Оказалось, что микробиомы людей, которые регулярно едят фрукты, овощи и кисломолочные продукты, более разнообразны. А вот чрезмерное потребление мяса снижает разнообразие организмов по сравнению с рационом, в котором преобладают фрукты и овощи.
Ученые также попытались узнать, какие лекарства больше, а какие меньше изменяют состав микробиоты. Выяснилось: на «внутреннюю экосистему» человека влияют 19 типов лекарств. И это далеко не одни только всем известные антибиотики и препараты, снижающие кислотность желудка. В «черный список» попали антидепрессанты, а также ингибиторы АПФ (лекарства, принимаемые при сердечной недостаточности и для снижения артериального давления).
Один из главных специалистов в России, занимающихся исследованиями микробиоты, биолог Дмитрий Алексеев говорит, что на сегодня это исследование самое качественное и обширное: «Можно сказать, что это начало целого направления в науке. В России сейчас проводится свое, более скромное популяционное исследование ohmygut, результаты которого было бы интересно сравнить с результатами исследования коллег из Голландии. Но уже сейчас мы можем сказать, что в голландской выборке количество организмов с измененной приемом антибиотиков микробиотой будет значительно меньше, чем в России: в этой стране применение антибиотиков строго ограничено врачами и фармацевтами, а у нас их можно купить в аптеке без рецепта. Голландцы выявили и неожиданные факторы влияния на микробиоту. Например, в использовании лекарств ожидаемо было то, что на первом месте будут антибиотики, но в голландской выборке особенно выделяются ингибиторы протонных помп (ИПП) — лекарства, используемые в мире достаточно часто в гастроэнтерологии и до сих пор считающиеся безопасными. Еще один результат: у людей, которые едят больше фруктов, уровень пептида хромогранина A (CgA), маркера стресса, оказался значительно ниже, чем у тех, кто предпочитает мясо. Так что ешьте фрукты — и будете меньше нервничать!»
Кроме того, положительное действие на состав микробиоты оказывают кисломолочные продукты, особенно обогащенные полезными бактериями.
Не все так радужно
И все же наука о микробиоме является хоть и многообещающим, но новым направлением. И многие эксперты относятся к достижениям в этой области со здоровой долей скепсиса. Как говорит руководитель биотехнологической компании Олег Парошин, связь между развитием болезней и микробиомом — пока лишь гипотеза: «Твердых фактов, доказывающих эту связь, пока нет. Достаточно давно обсуждается вопрос о влиянии микробиома кишечника на риск развития онкологических заболеваний. Но если, например, уже установлено, что ключевым фактором для развития рака желудка служит helicobacter pylori, то бактерия, являющаяся возбудителем рака кишечника, пока не идентифицирована. Есть гипотезы относительно прямого влияния продуктов жизнедеятельности и ферментов некоторых видов кишечных микроорганизмов, которые могут приводить к онкологическому перерождению клеток (особенно толстой кишки). Надеюсь, что дальнейшие исследования генома человеческого микробиома позволят обнаружить конкретных виновников онкологического перерождения здоровых тканей».
Парошин тем не менее согласен, что здоровое питание позволяет вырастить более полезные штаммы микроорганизмов: «От пищи, которую мы едим, зависит видовой состав микробиома, который оказывает практически безграничное действие на организм человека. В том числе он может влиять на развитие многих болезней. Другими словами, бактерии, превалирующие в микробиоме, определяются именно характером принимаемой пищи, а именно они, возможно, в основном и определяют характер заболевания».
В общем, вопросов у ученых пока очень много. Как выяснилось, микробиом имеет гораздо более сложную структуру, чем даже человеческие гены, так что изучить его основательно еще только предстоит. И все же исследователи надеются получить ответы на свои вопросы в ближайшее время.
Лучшее в «МК» — в короткой вечерней рассылке: подпишитесь на наш канал в Telegram
Источник