Почему мы живем в трехмерном пространстве
Мы живем в трехмерном мире: длина, ширина и глубина. Некоторые могут возразить: «А как же четвертое измерение — время?» Действительно, время — это тоже измерение. Но вот вопрос, почему пространство измеряется в трех измерениях — загадка для ученых. Новое исследование объясняет, почему мы живем в мире 3D.
Вопрос о том, почему пространство трехмерно, мучил ученых и философов с античных времен. Действительно, почему именно три измерения, а не десять или, скажем, 45?
В целом, пространство-время четырехмерно (или 3+1-мерно): три измерения образуют пространство, четвертым измерением является время. Существуют также философские и научные теории о многомерности времени, которые предполагают, что измерений времени на самом деле больше, чем кажется: привычная нам стрела времени, направленная из прошлого в будущее через настоящее — всего лишь одна из возможных осей. Это делает возможными различные научно-фантастические проекты, вроде путешествий во времени, а также создает новую, многовариантную космологию, которая допускает существование параллельных вселенных. Однако существование дополнительных временных измерений пока не доказано научно.
Вернемся в наше, 3+1-мерное измерение. Нам хорошо известно, что измерение времени связано со вторым законом термодинамики, который гласит, что в замкнутой системе — такой, как наша Вселенная — энтропия (мера хаоса) всегда возрастает. Уменьшаться вселенский беспорядок не может. Поэтому время всегда направлено вперед — и никак иначе.
В новой статье, опубликованной в EPL, исследователи предположили, что второй закон термодинамики может также объяснить, почему пространство трехмерно.
«Ряд исследователей в области науки и философии обращались к проблеме (3 + 1)-мерной природы пространства-времени, обосновывая выбор именно этого числа его стабильностью и возможностью поддержания жизни», — рассказал соавтор исследования Джулиан Гонсалес-Айала из Национального политехнического института в Мексике и университета Саламанки в Испании порталу Phys.org. «Ценность нашей работы заключается в том, что мы представляем рассуждения, основанные на физической модели размерности Вселенной с подходящим и разумным сценарием пространства-времени. Мы первые, кто заявил, что число «три» в размерности пространства возникает в качестве оптимизации физической величины».
Ранее ученые обращали внимание на размерность Вселенной в связи с так называемым атропным принципом: «Мы видим Вселенную такой, потому что только в такой Вселенной мог возникнуть наблюдатель, человек». Трехмерность пространства объяснялась возможностью поддержания Вселенной в том виде, в каком мы её наблюдаем. Если бы во Вселенной было множество измерений, по ньютоновскому закону тяготения не были бы возможны устойчивые орбиты планет и даже атомная структура вещества: электроны падали бы на ядра.
В данном исследовании ученые пошли другим путем. Они предположили, что пространство трехмерно из-за термодинамической величины — плотности свободной энергии Гельмгольца. Во Вселенной, заполненной излучением, эту плотность можно рассматривать как давление в пространстве. Давление зависит от температуры Вселенной и от количества пространственных измерений.
Исследователи показали, что могло происходить в первые доли секунды после Большого взрыва, называемые Планковской эпохой. В момент, когда Вселенная начала охлаждаться, плотность Гельмгольца достигла своего первого максимума. Тогда возраст Вселенной составлял долю секунды, а пространственных измерений было ровно три. Ключевая мысль исследования заключается в том, что трехмерное пространство было «заморожено», как только плотность Гельмгольца достигла своего максимального значения, которое запрещает переход в другие измерения.
На рисунке ниже изображено, как это происходило. Слева — плотность свободной энергии Гельмгольца (е) достигает своего максимального значения при температуре Т = 0,93, которое возникает, когда пространство было трехмерным (n=3). S и U представляют плотности энтропии и плотность внутренней энергии, соответственно. Справа показано, что перехода к многомерности не происходит при температуре ниже 0,93, что соответствует трем измерениям.
Это произошло вследствие второго закона термодинамики, который допускает переходы в более высокие измерения только тогда, когда температура выше критического значения — ни градусом меньше. Вселенная непрерывно расширяется, и элементарные частицы, фотоны, теряют энергию — поэтому наш мир постепенно охлаждается: Сейчас температура Вселенной гораздо ниже уровня, предполагающего переход из 3D-мира в многомерное пространство.
Исследователи поясняют, что пространственные измерения похожи на состояния вещества, а переход из одного измерения в другое напоминает фазовый переход — такой, как плавление льда, которое возможно лишь при очень высоких температурах.
«В процессе охлаждения ранней Вселенной и после достижения первой критической температуры, принцип приращения энтропии для замкнутых систем мог запретить определенные изменения размерности», — комментируют исследователи.
Это предположение по-прежнему оставляет место для более высоких измерений, которые существовали в Планковскую эпоху, когда Вселенная была еще более горячей, чем это было при критической температуре.
Дополнительные измерения присутствуют во многих космологических моделях — в первую очередь, в теории струн. Это исследование может помочь объяснить, почему в некоторых из этих моделей дополнительные измерения исчезли или остались такими же крошечными, как были в первые доли секунды после Большого взрыва, в то время как 3D-пространство продолжает расти во всей наблюдаемой Вселенной.
В будущем исследователи планируют улучшить свою модель, чтобы включить дополнительные квантовые эффекты, которые могли возникнуть в первую долю секунды после Большого взрыва. Кроме того, результаты дополненной модели могут также служить ориентиром для исследователей, работающих на других космологических моделях, таких как квантовая гравитация.
Источник
Космологи объяснили, почему Вселенная является трехмерной
МОСКВА, 17 окт – РИА Новости. Мы живем в «плоском» трехмерном пространстве благодаря существованию особых узлообразных структур из элементарных частиц в ранней Вселенной, которые сохраняли стабильность только в среде с тремя измерениями, говорится в статье, опубликованной в European Physical Journal C.
«Наша идея «узлового» расширения Вселенной не только объясняет существование трех измерений, но и раскрывает то, откуда взялась энергия, необходимая для осуществления этого процесса, и почему он так резко остановился. Сеть этих узлов, грубо говоря, лопнула почти сразу после начала расширения Вселенной, что ликвидировало источник энергии, питавший этот процесс», — рассказывает Томас Кепхарт (Thomas Kephart) из университета Вандербильта в Нэшвилле (США).
На сегодняшний день среди ученых нет консенсуса насчет того, является ли наша Вселенная трехмерной, или же на самом деле в ней гораздо больше измерений, часть из которых мы просто не видим или даже не можем видеть по разным причинам. Существование этих измерений, как сегодня надеются физики, может помочь нам «примирить» теорию относительности и квантовую физику и создать теорию квантовой гравитации, объясняющую то, что происходит внутри черных дыр.
К примеру, теория суперструн постулирует, что Вселенная изначально родилась десятимерной и обладала одним временным и девятью пространственными измерениями. Часть сторонников этой теории считают, что «лишние» шесть измерений схлопнулись и замкнулись сами на себя. Другие физики считают, что наша трехмерная Вселенная является лишь частью многомерной мультивселенной (мультиверса), а остальные шесть измерений мы не можем увидеть и изучить.
Кепхарт и его коллеги предполагают, что существование трех измерений в нашей текущей Вселенной и сам факт ее расширения не были случайными событиями, а вполне логичными и связанными друг с другом вещами. Они пришли к такому выводу, пытаясь просчитать и описать первые мгновения жизни Вселенной после Большого Взрыва.
Источник
Космологический ликбез. Что такое Вселенная
2MASS Redshift Survey (2MRS)
Борис Штерн
Мы в соавторстве с Валерием Рубаковым работаем над книгой с рабочим названием «Острые углы космологии». Она будет во многом полемической: рассмотрим основные темы, о которых спорят и судачат, и вопросы, ответы на которые пока еще не знают. Но для начала — ликбез. Это первая глава будущей книги.
Разные люди понимают под словом «Вселенная» совершенно разные вещи. Например, «всё сущее». Но надо бы сузить понятие, доопределить его до чего-то конкретного. Большинство космологов, вероятно, согласится с тем, что Вселенная — это пространство со всем содержимым, в котором мы находимся и которое теоретически можно покрыть непрерывной гладкой координатной сеткой, или мысленной сетью наблюдателей, каждый из которых видит соседей.
Вселенная имеет четыре измерения — три одинаковых (пространство) и четвертое — радикально отличающееся от этих трех (время).
Это Вселенная с большой буквы, но для понимания Мироздания нам потребуется вселенная с маленькой буквы. Это то же самое, только надо исключить оттуда нас и убрать конкретное число измерений. Получим некое другое пространство, в котором нас нет, пространство с другим содержимым и, возможно, с другими свойствами, включая число и характер измерений. Это будет просто другая вселенная, которую мы никогда не сможем наблюдать, можем только сказать, что ничто не запрещает существование ее и ей подобных. И еще есть некоторые наводящие соображения, по которым такие вселенные должны быть, причем в неограниченном количестве, в том числе непохожие на нашу.
Геометрия Вселенной
Какова геометрия Вселенной? Легче всего представить себе бесконечное вечное пространство, в котором работают аксиомы Евклида, — так Вселенную и представляли себе до третьей декады ХХ века. Но это не обязательно так. Представим себе двумерное пространство — это легко. Например, бесконечную плоскость, где также справедливы аксиомы Евклида. Это будет двумерный аналог бесконечного евклидова трехмерного пространства. Но можно легко представить и иной вариант — сферу. Это замкнутое конечное пространство, где параллельные прямые пересекаются, а сумма углов треугольника больше 180°. Такое пространство называется римановым, его кривизна положительна.
Представим себе, что эта сфера — целый мир, вселенная с маленькой буквы. По сфере распространяется свет — по геодезическим линиям, т. е. по кратчайшему расстоянию между точками. На сфере существуют двумерные материальные объекты и даже созданные из них разумные существа. Эта вселенная не имеет краев, но она конечна — пространство замкнуто. Если вселенная стационарна, т. е. ее размер и форма не меняется со временем, то в ней можно совершить кругосветное путешествие — отправиться по прямой и вернуться с обратной стороны. В этом случае яркие объекты можно увидеть с двух противоположных сторон, подобно тому, как ударная волна от мощнейшего взрыва приходит дважды, обогнув земной шар в противоположных направлениях.
Мы, живущие в трех измерениях, видим сферу со стороны, видим, что она выпуклая и замкнутая. А могут ли микроскопические двумерные существа, живущие на этой сфере и не имеющие выхода за ее пределы, убедиться, что она не плоская? Еще как! Например, построить большой треугольник и измерить сумму углов. Если она больше 180° — то кривизна положительна, геометрия риманова, и можно говорить о том, что их вселенная замкнута (в предположении, что кривизна везде одинакова). А если сумма равна 180° или меньше, значит, кривизна нулевая или отрицательная, геометрия евклидова или Лобачевского, вселенная бесконечна. Причем даже не обязательно «строить» треугольник — достаточно измерить угловой размер объекта с известным линейным размером и известным расстоянием до него.
В нашем примере предполагается, что есть дополнительное третье измерение, иначе мы бы не могли смотреть на сферу со стороны. Но может ли его не быть вовсе? Конечно, может! Существование такой двумерной вселенной без всяких дополнительных измерений не противоречит никаким принципам. А может ли быть так, что измерений все-таки три, а вселенная — просто вложенный в них двумерный пузырь, из которого нельзя или очень трудно выпрыгнуть в третье измерение — физика не позволяет? Тоже может быть — это называется «мир на бране». Теоретики рассматривают возможность, что наша Вселенная — тоже мир на бране, но проверить, так ли это, мы пока не можем.
Теперь следующий, более трудный, но важный шаг: пусть наша сфера будет трехмерной — трехмерное замкнутое пространство. Это вообразить гораздо сложнее, поскольку мы не можем представить себе четвертое измерение, помогающее взглянуть извне на трехмерную сферу. Теперь мы сами — те микроскопические существа, заключенные в замкнутом пространстве. Если наша вселенная стационарна (радиус сферы не меняется со временем), мы можем совершить кругосветное путешествие, отправившись в любом направлении и вернувшись с противоположного. Мы будем видеть яркие объекты с двух противоположных сторон неба (такие объекты безуспешно искались). И если сфера совсем идеальная, то взгляд, брошенный человеком в любом направлении, упрется в его же затылок, правда, его изображение будет исчезающе тусклым из-за колоссального увеличения.
До сих пор мы говорили о вселенной как о замкнутой сфере идеальной формы. Это не обязательно так. Сфера может быть покрыта мелкой рябью, может иметь глобальные деформации (что усложняет кругосветное путешествие). Теоретически вселенная может даже иметь другую топологию, например тороидальную. Но все-таки нам важно, чтобы вселенная была замкнутой и конечной. Теоретически можно описать и бесконечную вселенную, но тогда встает тяжелый вопрос: как она могла появиться? Этот вопрос можно просто проигнорировать, но с конечной вселенной намного проще: вопрос о ее появлении (и размножении) не то, чтобы решен, но просматривается в общих чертах.
А может ли вселенная иметь форму чемодана? То есть быть пространством не замкнутым, а ограниченным какими-то стенками? Теоретически — да. Например, есть такое понятие, как «доменные стенки», разделяющие пространства с разными законами физики. Тогда за стенкой лежит другая смежная вселенная (домен) и скорее всего стенка движется — один домен пожирает другой, но это уже за пределами темы этой книги, и возвращаться к доменным стенкам мы не будем.
Вариантов геометрии вселенных огромное множество, но мы должны остановиться на самом простом, который к тому же и самый естественный: однородная изотропная сфера. Однородная означает, что условия в каждой точке одинаковы, изотропная — нет выделенных направлений. В случае нашей Вселенной — сфера трехмерная. Для демонстрации будем использовать идеальную двумерную сферу в трехмерном пространстве. Мы приходим к тому, что называется пространственно ноль-мерной задачей: ото всех пространственных координат ничего не зависит, независимой переменной остается только время. Решение задачи будет описывать только размер (радиус кривизны, масштаб) Вселенной — его изменение со временем.
Кинематика Вселенной
Выше мы для наглядности рассматривали стационарную вселенную. На самом деле так не бывает. Устроить стационарную вселенную очень трудно — нужна точная подгонка параметров, об этом будет сказано ниже. Реальные вселенные либо расширяются, либо сжимаются. Нам интереснее первый вариант, поскольку наша Вселенная расширяется.
Кругосветное путешествие нам не светит: никто, ограниченный скоростью света, не сможет обогнать расширение Вселенной, поскольку оно может быть сверхсветовым, а в нашей Вселенной — точно сверхсветовое. Это не ошибка — удаленные области Вселенной действительно разлетаются со скоростями выше световой. Как ни крамольно это звучит. Чтобы объяснить этот парадокс, нужно сначала разобраться в том, что значит «расширение» и «удаленные области разлетаются». Эти слова подразумевают, что во вселенной в каждой точке существует некоторая выделенная система отсчета.
В нашей модели вселенной в виде двумерной поверхности замкнутой сферы расширение можно смоделировать, например, надувая эту сферу, если она резиновая. Там выделенная система отсчета очевидна — это материал сферы. Пусть резина везде одинаковая и можно нанести на нее точки и наблюдать, как они удаляются друг от друга при надувании. А в реальной физической Вселенной вроде бы нет материала, выделяющего систему отсчета. В пространстве действует специальная теория относительности, отрицающая существование выделенных систем. Ну да, есть малоподвижные звезды и галактики, но это лишь факт биографии нашей Вселенной, в специальной теории относительности они не задают систему отсчета. А в общей теории относительности, оказывается, задают.
Выделенной системы отсчета нет только в пустом плоском пространстве. А если пространство не пустое? Значит, появляется система, где суммарный импульс вещества равен нулю (назовем ее «система объемного покоя»). Эта система — факт биографии вселенной, но общая теория относительности вынуждена с этим фактом считаться — для этой системы уравнения общей теории относительности выглядят несравненно проще, и их решения интерпретируются однозначно: сжимается или расширяется само пространство. Если вселенная однородна и изотропна, ее эволюция определяется изменением одной переменной. Это так называемый масштабный фактор a. Если пространство кривое, то в качестве естественного масштабного фактора можно взять радиус кривизны. Если пространство настолько плоское, что его кривизна лежит за пределами обнаружимости, тогда удобней использовать безразмерный масштабный фактор: расстояние между двумя точками пространства относительно расстояния между ними же в фиксированный момент времени. То есть берем расстояние между точками A и B в определенный момент времени (например, сейчас в нашей Вселенной), обозначаем его ao и смотрим, как меняется расстояние a(t) между этими точками со временем. Для удобства убираем конкретное расстояние между конкретными точками, работая с безразмерным соотношением, общим для всей однородной вселенной, a(t)/ao, где t — время. Тогда относительный темп расширения вселенной будет ȧ/a, где ȧ — производная a(t) по времени — это ни что иное, как постоянная Хаббла, H. В странных единицах, к которым все привыкли, постоянная Хаббла для нашей Вселенной в настоящий момент примерно равна 67 км/с на мегапарсек. Если обратить внимание на то, что расстояние входит как в числитель, так и в знаменатель, можно его сократить, выразив мегапарсек в километрах. Получим 2,2 ⋅ 10 –18 с –1 (обратная величина — порядка возраста Вселенной, что не случайно). Скорость, с которой точки А и В удаляются друг от друга, равна S ⋅ Н, где S — расстояние между точками в данный момент. Если S = c/H
1,4 ⋅ 10 28 см, то точка В удаляется от точки А со скоростью света.
Что такое горизонт вселенной? По идее, это расстояние между точками А и В (под расстоянием понимаем сумму длин малых отрезков, измеренных в сопутствующей системе отсчета по пути от А к В), когда нечто произошедшее в одной точке может повлиять на происходящее в другой точке, но не дальше. Но здесь, в отличие от ситуации с черной дырой, которая тоже имеет горизонт, возникает важный вопрос «когда?». Когда произошло и когда повлияло. Есть два определения горизонта:
- Событие произошло когда-то в прошлом, повлияло сейчас (событие и влияние могут быть испусканием и получением светового сигнала). Момент в прошлом выбирается так, чтобы сейчас точки, обменявшиеся причинно-следственным влиянием, разлетелись на максимальное расстояние (для нашей Вселенной этот момент будет Большим взрывом). Это так называемый горизонт частиц. Он неплохо вычисляется, поскольку мы знаем историю Вселенной.
- Событие произошло сейчас и когда-то в будущем повлияет на точку В, но не дальше. Это так называемый горизонт событий. Мы не знаем, где он и существует ли он вообще, поскольку не знаем будущего Вселенной. Когда говорят просто «горизонт», почти всегда имеют в виду первый вариант, т. е. горизонт частиц.
Горизонт нашей Вселенной в настоящий момент находится в 46 млрд световых лет от нас при возрасте Вселенной 13,8 млрд лет. Ничего удивительного: точка В в молодой Вселенной убегала от нашей точки А гораздо быстрей света. Более того, фотон, испущенный из точки В в сторону А, тоже удалялся от точки А быстрей света. Ситуацию приблизительно иллюстрирует рисунок внизу.
Не будет большой ошибки, если мы выберем точку В не в момент Большого взрыва, а чуть позже — в момент рекомбинации. От момента Большого взрыва до нас не дошло ничего, кроме нейтрино и гравитационных волн, а от момента рекомбинации дошло реликтовое излучение, у нас есть прекрасная карта Вселенной возраста 380 тыс. лет. И мы видим там зародыши будущей крупномасштабной структуры — будущие войды и вероятные будущие сверхскопления. Сейчас всё это улетело на 46 млрд световых лет, но у нас есть хотя бы приблизительная информация о том, что там сейчас находится. В этом и есть смысл горизонта.
А откуда берется красное смещение? Что происходит с фотоном по пути? Первая реакция обычного человека — приписать красное смещение эффекту Доплера. Галактика N удаляется от нас из-за расширения Вселенной, и ее спектр смещен в красную сторону на величину $\frac<(1-v/c)><\sqrt<1-v^2/c^2>>$. Если галактика неподалеку, то всё в порядке, эффект Доплера дает разумный результат. А если галактики очень далеко, и это даже не галактика, а некая точка В с графика в молодой Вселенной, когда она удалялась быстрее света? Что ставить в формулу для эффекта Доплера? Скорость, превышающую световую? И что произойдет со знаменателем в этой формуле? Между тем мы видим реликтовое излучение с красным смещением около тысячи. Откуда взялась такая величина?
Дело в том, что природа космологического красного смещения другая — это именно расширение пространства. Волна электромагнитного поля, пересекающая пространство, растягивается вместе с ним. Если за время пролета вселенная растянулась в a раз, то и длина волны увеличится в a раз, а ее частота и энергия в a раз упадет. Наша Вселенная с момента рекомбинации растянулась примерно в тысячу раз, соответственно энергия фотонов и температура реликтового излучения в тысячу раз уменьшилась. Кстати, если рассмотреть покраснение фотонов как череду небольших доплеровских смещений в расширяющемся пространстве, разбив его траекторию на небольшие шаги, мы получим тот же самый результат.
Горизонт в расширяющейся вселенной. Пунктиром показаны траектории точек, изначально находящихся на разных расстояниях от точки А, в которой находимся мы. Горизонт определяется точкой В, от которой световой луч, испущенный в нашу сторону в самом начале расширения Вселенной, пришел к нам сейчас. Расстояние до горизонта равно расстоянию, на которое точка В ушла от нас к настоящему времени. Мы не знаем, что происходит сейчас в точке В, но если взять за начало эпоху рекомбинации, которая отображена в карте реликтового излучения, можем примерно восстановить, где там пустоты и сверхскопления. На рисунке не учтено современное ускоренное расширение Вселенной из-за темной энергии. Для стационарной вселенной луч света в этих координатах был бы представлен прямой линией, идущей под углом 45°.
Можно продемонстрировать растягивание электромагнитной волны вместе с расширением вселенной и более строго, но это потребует введения дополнительных понятий и формул. Частицы, летящие со скоростью, близкой к скорости света, тоже теряют свою энергию как Е = Ео⋅ ao/a(t), а нерелятивистские частицы таким же образом теряют скорость относительно системы покоя.
А как же специальная теория относительности? Она никуда не делась, просто надо помнить, что преобразования Лоренца применимы для плоского (евклидова) стационарного пространства. А в расширяющемся пространстве они тоже применимы, но имеют локальный характер: все преобразования скоростей и другие релятивистские эффекты сохраняют свой вид для событий, относительно близких в пространстве.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник