Меню

Наша вселенная это замкнутая система

Астрономы доказали, что Вселенная замкнута. Что? Нет!

На этой неделе в журнале Nature Astronomy была опубликована статья, авторы которой утверждают о наличии небольшой глобальной положительной кривизны пространства. Эта новость получила широкую огласку как в зарубежных, так и в российских СМИ, причем ее обычно преподносят как прояснение формы Вселенной. Мы попросили постдока Университета Нью-Йорка Михаила Иванова прокомментировать эту работу.

Обработанная с помощью нейросетевого алгоритма Deep Dream карта линий галактического магнитного поля, полученная при анализе реликтового излучения

ESA / Planck Collaboration / Deep Dream Generator

Бурное развитие наблюдательной космологии, продолжающееся на протяжении последних десятилетий, позволило измерить фундаментальные параметры, описывающие нашу Вселенную, несколькими различными способами с процентной точностью.

Если существуют слабые эффекты физики за рамками стандартной космологической модели, то они могут проявиться в наблюдениях уже сейчас. С другой стороны, на достигнутом уровне точности многие систематические ошибки измерений начинают превосходить статистические, и поэтому проявление систематических эффектов можно ошибочно принять за сигнал новой физики.

В связи с этим весьма важно прояснить статистические аномалии в космологических данных, которые имеются уже сейчас. Наиболее важные из них — это противоречивые измерения постоянной Хаббла и амплитуды возмущений крупномасштабной структуры Вселенной, связанные также с аномалией линзирующего потенциала микроволнового излучения. Первый эффект уже был подробно описан и неоднократно освещался в материалах N+1 .

Что касается второго эффекта, то он заключается в следующем. Гравитационное линзирование фотонов реликтового излучения (РИ) структурами на малых красных смещениях приводит к размытию пиков барионных акустических осцилляций (БАО) в спектре флуктуаций температуры. Этот эффект можно понять так: траектории фотонов РИ искажаются из-за наличия структур случайным образом, вследствие этого корреляция между ними ослабевает, и некоторые особенности в спектре, такие как БАО, ослабевают.

Также гравитационное линзирование можно воспринимать как диффузию фотонов, которая размывает БАО аналогично тому, как диффузия разрушает акустические волны в обычной жидкости. Этот эффект может быть аккуратно вычислен, однако, наблюдаемое размытие, измеренное «Планком», оказалось существенно сильнее, чем предсказывается в рамках стандартной космологической модели ΛCDM.

Величину этого эффекта можно выразить через нефизический параметр Alens, который должен быть равен единице в ΛCDM. Любопытно, что в последнем релизе «Планка» Alens отличен от 1 на уровне статистической значимости в 3 сигма. При этом размытие пиков микроволнового излучения имеет место только на малых угловых масштабах (меньше 1/800 радиана).

Аномальное размытие представляет собой одну из причин того, что космологические параметры, измеряемые из спектров мощности флуктуаций температуры и поляризации на малых угловых масштабах, расходятся на уровне 3 сигма с параметрами, извлекаемыми из флуктуаций на больших угловых масштабах. Это несоответствие, однако, обычно интерпретируется как статистическая флуктуация. Такой точки зрения придерживаются многие космологи, в том числе участники коллаборации «Планк».

Это связано с тем, что «Планк» совершает множество независимых измерений, при которых отклонения на уровне 3 сигм обязаны происходить (look elsewhere effect). Сильным указанием на то, что это действительно флуктуация, является прямое измерение линзирующего потенциала РИ, которое отлично согласуется с предсказанием ΛCDM.

Размытие пиков и линзирование карт РИ являются двумя независимыми способами измерения одного и того же линзирущего потенциала. Не существует физической модели, которая бы приводила к разным искажениям в результатах этих двух измерений. Таким образом, наличие разногласия между ними может быть либо систематикой, либо флуктуацией, но никак не новой физикой.

Недавно опубликованная статья ученых под руководством Джозефа Силка (Joseph Silk) из Парижского института астрономии также касается эффект разногласия между измеряемыми «Планком» космологическими параметрами на больших и малых угловых масштабах.

Сразу необходимо заметить, что авторы используют только информацию о температуре и поляризации, игнорируя при этом измерения линзирующего потенциала. Если исследовать только выбранные данные, то предположение о наличии положительной пространственной кривизны позволяет снять разногласие между большими и малыми мультиполями. При этом отличие кривизны от нуля значимо на уровне 3 сигма.

Это наблюдение не ново и уже было сделано в статьях коллаборации «Планк». В новой работе ученые явно показывают, что при добавлении кривизны аномальное линзирование пропадает. Тем не менее, предложенная ими модель приводит к усилению других разногласий. Во-первых, она не сопоставима с измерением барионных акустических осцилляций в распределении структур на малых красных смещениях (SDSS, BOSS, eBOSS). Во-вторых, усиливается расхождением с прямым измерением линзирующего потенциала РИ.

Читайте также:  Почему вселенная называется вселенной

В-третьих, усиливается расхождение с измерением слабого линзирования галактик обзором KiDS. В-четвертых, модель с кривизной предсказывает значение постоянной Хаббла на уровне 55 км/с/Мпк, что сильнее расходится с локальными измерениями, чем результаты оригинального анализа данных «Планка», то есть усугубляет напряженность Хаббла.

Таким образом, модель с кривизной находится в сильном противоречии с космологическими данными на малых красных смещениях. При этом надо иметь в виду, что вклад кривизны становится важен именно на малых красных смещениях, и поэтому данные измерения более чувствительны к ней, и они-то как раз предпочитают нулевую кривизну.

Основывать утверждения о кривизне только на данных «Планка» по температуре и поляризации при игнорировании данных линзирования, БАО и сверхновых методологически неправильно, и именно поэтому коллаборация «Планк» не делала сильных утверждений из того факта, что данные по РИ на больших красных смещениях предпочитают ненулевую кривизну.

Как только все данные объединены, кривизна становится равна нулю с большой статистической значимостью. Кроме того, модель с кривизной усиливает несогласие между разными независимыми измерениями космологических параметров настолько, что эти несоответствия нельзя больше рассматривать как статистические флуктуации. С этой точки зрения более предпочтительной моделью должна быть та, которая минимизирует несогласие, и такая модель есть — это обычная плоская ΛCDM с параметрами «Планка».

Резюмируя, опубликованная статья делает громкие утверждения на основе методологически неправильных манипуляций с данными, что не позволяет относится к полученным результатам как к надежным. Эта ситуация также указывает на слабый процесс реферирования в Nature Astronomy, который в данном случае повел себя как типичный «мусорный журнал».

Источник

Новое исследование предполагает, что Вселенная является замкнутой сферой

Если вы находитесь внутри чего-то, вам трудно точно определить его форму. Мы до сих пор все еще узнаем что-то новое о форме нашей галактики.

Как тогда насчет формы Вселенной? Ее гораздо сложнее измерить, но годы наблюдательных данных, космологических моделей и физики говорят о том, что она пространственно плоская. Отправьте пучок фотонов через пустоту, и он будет продолжать двигаться по прямой линии.

Новое исследование утверждает обратное. Основываясь на данных, опубликованных в прошлом году и собранных спутником Планка Европейского космического агентства, астрономы доказывают, что Вселенная фактически искривлена ​​и замкнута, как раздувающаяся сфера.

Это означает, что пучок фотонов в конечном итоге вернется туда, откуда они начал свое движение, пересекая другие лучи, которые будут оставаться параллельными в сценарии плоской Вселенной.

Согласно исследованию международной команды астрономов во главе с Элеонорой ди Валентино из Манчестерского университета в Великобритании, их результаты представляют собой «космологический кризис», который требует «радикального переосмысления текущей космологической модели согласования».

Ученые говорят, что ключ к искривлению Вселенной заключается в том, как гравитация изгибает путь света, и этот эффект, предсказанный Эйнштейном, называется гравитационным линзированием.

Не только любой свет, но и космический микроволновый фон (реликтовое излучение). Это электромагнитное излучение, оставшееся в пространстве между звездами и галактиками, начиная примерно с 380 000 лет после Большого взрыва, когда сформировались первые нейтральные атомы Вселенной.

Как только вы заблокируете все другие источники света, пространство будет слабо светится, что-то вроде фоновой статики. Это самый старый свет во Вселенной, обладающий высокой степенью изотропности и спектром, свойственным для абсолютно чёрного тела, с плотностью энергии 400-500 фотонов/см3.

Если посмотреть на данные со спутника Планка, и в частности на данные 2018 года, они показывают, что реликтовое излучение подвергается гравитационной линзе более сильной, чем должно было быть. Коллаборация Планка назвало эту аномалию Alens, и это еще не решено, но команда ученых считает, что одним из объяснений может быть форма Вселенной.

Читайте также:  День общения со вселенной 8 июля

«Закрытая Вселенная может дать физическое объяснение этому эффекту, поскольку космические микроволновые фоновые спектры Планка теперь предпочитают положительную кривизну при уровне достоверности более 99 процентов», — пишут они.

«Здесь мы дополнительно исследуем доказательства существования закрытой Вселенной от Планка, показывающие, что положительная кривизна естественным образом объясняет аномальную амплитуду линзирования».

Закрытая Вселенная может объяснить эту аномалию, но есть несколько больших проблем, не в последнюю очередь из-за того, что все другие анализы наборов данных Планка, включая данные 2018 года, приводят к выводу, что наши космологические модели верны. А они включают в себя плоскую Вселенную.

Есть и другие проблемы, и исследователи постаралась отметить это в своей статье. Одним из них является постоянная Хаббла, скорость, с которой расширяется Вселенная, нерешенная проблема космологии. Не существует двух одинаковых измерений постоянной Хаббла, и искривление Вселенной только затрудняет ее предсказание.

Данные барионных исследований акустических колебаний темной энергии — неизвестной энергии, ускоряющей расширение Вселенной — также не согласуются с моделью замкнутой Вселенной, как и данные о космическом сдвиге, полученные из наблюдений гравитационного линзирования.

Астрофизики Джордж Эфстатиу и Стивен Граттон из Кембриджского университета также проанализировали данные Планка за 2018 год и нашли доказательства кривизны вселенной, но когда они сравнили их с другими наборами данных Планка и данными об акустических колебаниях барионов, они обнаружили «убедительные доказательства в поддержку пространственно плоской Вселенной».

Таким образом, в широком смысле, большая часть данных, кажется, подтверждает плоскую Вселенную, за исключением аномалии Аленса. Это проблема, которая должна быть решена в будущем.

Источник

Наша вселенная это замкнутая система

Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface.
Калибровка принтера делится на три этапа:

1 Этап. Корректируем плоскость по трем точкам

Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.

Алгоритм настройки:

  1. Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)

    После чего мы увидим все настройки принтера.
  2. Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
    И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
  3. Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
  4. Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
  5. Теперь приступаем непосредственно к настройке наших трех точек.
    Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.

    Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

    Калибровка:

    1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
    2. Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
    3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
    4. Команды:
      G666 R67,7
      M500
      G28
    5. Подгоняем дельта радиус пока наша плоскость не выровняется
    3 Этап. Находим истинную высоту от сопла до столика

    Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
    1 Способ:
    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
    G666 H 235.2
    M500
    G28

    2 Способ:
    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

    Источник

    Adblock
    detector