Меню

Научно исследовательское судно космос

«Космический» флот Советского Союза

21 августа 1957 года был произведен успешный пуск первой советской (и первой в мире) баллистической ракеты, знаменитой «королёвской семерки», которая после незначительной доработки стала базовой ракетой-носителем для наших спутников и пилотируемых кораблей. Пролетев около 8 тыс. км, головная ее часть упала в дальневосточном районе страны. Там измерительные пункты «приняли» объект и выдали поисковым службам координаты его приземления. Стало ясно, что при пусках более мощных систем или модификаций последние ступени ракет завершат полет за границами страны, в Тихом океане. А значит, для наблюдения за ними потребуется создать специальные «плавучие лаборатории», установить на них соответствующее оборудование.

То, что космическим кораблям будет необходима помощь морских судов, специалисты поняли в 1955 году, еще до запуска в космос первого спутника, когда создавался наземный командно-измерительный комплекс (КИК). Эта работа была неплановой и велась по инициативе небольшой группы сотрудников во главе с Н. Устиновым.

После полета «семерки» создание морского измерительного комплекса стало одной из первоочередных задач. «Акватория» — так ученые назвали научно-исследовательскую работу, результаты которой должны были воплотиться в суда с измерительной техникой. «И не в будущем, — сообщил исполнителям темы ее руководитель Г. Тюлин. — Сергей Павлович Королев испытания новейшей ракеты-носителя намечает на середину октября 1959 года. Так что раскачиваться времени у нас нет: через 12 месяцев суда должны быть в Тихом океане. »

Создание методик измерений с применением уже существовавших сухопутных радиотехнических средств продвигалось успешно. Однако стационарные пункты неподвижны относительно поверхности Земли, антенны, программы наведения обеспечивают непрерывное наблюдение за космическим аппаратом. Другое дело на море: здесь незначительная качка судна вызовет потерю антенной контролируемого объекта. А при шторме уже никакие приборы программного наведения не смогут помочь. Тут требовалось разработать новые методы и средства, с помощью которых основания антенн (платформы) можно было бы стабилизировать, несмотря на качку.

Чтобы точно определить время и координаты приводняющихся объектов, пришлось дополнить радиолокационные и оптические средства гидроакустическими. Для «привязки» всей измерительной информации к общей шкале решили использовать аппаратуру единого времени «Бамбук», которая хорошо показала себя в работе с первыми космическими спутниками. Чтобы предохранить сложные измерительные средства от воздействия влаги и колебаний температуры, необходимо было найти эффективные способы и материалы. Основным требованием к ним было отсутствие влияния на точность измерений.

Непростой оказалась задача размещения на судне разнотипных радиотехнических станций, которые, чтобы не вызвать взаимных помех, на суше располагают друг от друга на достаточно большом расстоянии, порой до нескольких километров. При необходимости экранирования «несовместимых» средств на суше экраны тщательно заземляются. На морских судах, естественно, нет таких условий. К тому же судовая электростанция не может обеспечить питания новой техники как по мощности, рассчитанной лишь на «свои» нужды, так и по параметрам тока, к которым измерительные средства предъявляли особые повышенные требования.

К этим и многим другим инженерным и научным проблемам добавились сугубо организационные: у Министерства Морфлота СССР каждое судно в те годы было на счету, а для создания плавучего комплекса изначально их требовалось как минимум четыре (три измерительных и одно связное). Последнее обеспечивало прием с космодрома и дальнейшую ретрансляцию на остальные суда информации о подготовке и запуске ракеты, расчетном времени и координатах завершения ее полета, а также для передачи результатов измерений на космодром. Спутников связи, которые сейчас выполняют эти обязанности, в те годы не существовало.

Кроме того, в ряде инстанций, мягко говоря, не находила поддержки сама идея создания плавучего измерительного комплекса, особые сомнения вызывали сроки ее реализации и возможность выделения для этих целей судов, которых не хватало «для нархозперевозок». Но все-таки после упорной борьбы руководителя «Акватории» четыре скромных сухогруза пришвартовались к причалам ленинградского судостроительного завода. Там была сосредоточена вся техника, разумеется, в сухопутном исполнении, так как на разработку специального морского варианта времени не оставалось. Разместить всю технику в неприспособленных для этого тесных кубриках и трюмах возможности не было, и конструкторами было принято смелое и радикальное решение: оставить от сухогрузных судов лишь корпус и элементы ходовой части, ликвидировать все переборки, а компоновку для новой техники спроектировать заново.

Суда успели подготовить в срок. Тем временем завершились подбор и назначение специалистов в состав экспедиций. После швартовых испытаний приступили к ходовым. Чтобы сэкономить время, с ними совместили проверки измерительных средств по самолетам.

Наконец, предстояло решить вопрос, каким путем идти к месту работы — в Тихий океан. Существовало три варианта: один, протяженностью около 23 тыс. км, проходил через Суэцкий канал, второй, 29,4 тыс. км, огибал Африку и третий, самый короткий, но и самый трудный, — Северный морской путь.

Н.С. Хрущев распорядился направить экспедицию северным путем — дома и стены помогают. В результате пришлось в спешном порядке усилить ледовыми подкреплениями корпуса судов. Были подготовлены ледоколы для проводки «звездной флотилии» и самолеты для упреждающей разведки наиболее сложных участков трассы. Маршрут преодолели менее чем за месяц. Непростые ледовые и погодные условия, другие сложности перехода не помешали выполнить задачу.

В пути испытатели осваивали новую технику, проводили частные и комплексные тренировки. В расчетный район акватории суда пришли точно в назначенное время. Несмотря на шторм, первая работа прошла весьма успешно, как, впрочем, и все последующие. Спустя несколько лет тихоокеанская экспедиция, как стали называть первую группу плавучих измерительных средств, пополнилась новыми судами, в том числе наиболее совершенным из них — «Маршалом Неделиным».

Читайте также:  Когда люди открыли космос

Подготовка к пилотируемым космическим полетам и запускам автоматических межпланетных станций (АМС) потребовала расширения сферы действия тихоокеанской экспедиции. Расчеты показали, что для приземления спускаемых аппаратов в намеченном равнинном районе страны торможение космических кораблей нужно осуществлять над акваторий Атлантического океана. Примерно здесь же намечались старты АМС с орбиты искусственных спутников Земли (ИСЗ) на трассы перелета, например к Венере и Марсу. Для обеспечения контроля за этими наиболее ответственными этапами космических полетов — завершающими для пилотируемых кораблей и начальным для АМС, измерительные средства необходимо было направить в воды Атлантического океана и Средиземного моря.

Казалось бы, какие сложности для перебазирования с Тихого океана уже существовавших судов? Расчеты баллистиков и моряков отвергли такую постановку вопроса. Для обеспечения надежного управления полетами все увеличивающегося количества космических аппаратов измерительные средства нужны одновременно и в Тихом, и в Атлантическом океане, а переход судов «туда и обратно» экономически был нецелесообразен. Поэтому, используя «тихоокеанский» опыт, уже упоминавшийся НИИ организовал создание еще одной группы, подобной тихоокеанской, на базе трех теплоходов — «Ильичевск», «Краснодар» и «Долинск». Телеметрические станции, аппаратуру единого времени и автономные источники электроснабжения на судах обслуживали малочисленные, по 8-10 человек, экспедиции из специалистов того же НИИ и измерительных пунктов сухопутного КИКа.

С увеличением числа космических аппаратов на околоземных и межпланетных орбитах прибавлялось работы испытателям на море. Иногда не хватало времени даже на заходы в африканские порты, чтобы пополнить судовые запасы, особенно топлива. На помощь «атлантической триаде» судов в октябре 1962 года пришел танкер «Аксай». Для повышения эффективности использования в дальних рейсах дорогостоящего корабельного времени на борту танкера смонтировали телеметрическую станцию, на которой работала самая малочисленная экспедиция во всей «звездной флотилии» — из шести человек. В 1965-1966 гг. на смену ветеранам флотилии пришли новые суда — «Бежица» и «Ристна». Они были оборудованы новой техникой, в том числе и мощными радиопередатчиками, надежно обеспечивавшими связь с Центром.

В 1967 году «космическую флотилию» передали в ведение Службы космических исследований Отдела морских экспедиционных работ АН СССР. Во главе этого отдела с середины 1951 года по 1986-й, до последних дней своей жизни, бессменно стоял знаменитый исследователь Арктики И. Папанин.

Расширение исследований и использования космоса вызвало совершенствование плавучих командно-измерительных средств, которые со временем стали размещать не на переделанных сухогрузах, а на специально разработанных новых судах. Первенцем их стало научно-исследовательское судно (НИС) «Космонавт Владимир Комаров», или «КВК», как назвали его испытатели для краткости обозначения на экранах и табло в Центре управления полетом (ЦУП). По числу сотрудников научная экспедиция на «КВК» в семь раз превзошла ту, что была на самом крупном корабле первого поколения — «Долинске». Лишь одно это сопоставление позволяет представить превосходство новых НИС над предшествующими судами по насыщенности аппаратурой и научному потенциалу.

Вторым в новом поколении было судно «Академик Сергей Королев». Для него впервые, вся измерительная техника была изготовлена в морском исполнении. По своим характеристикам «АСК» превосходил все предыдущие суда.

Вершиной «космического судостроения» стал флагман флотилии — «Космонавт Юрий Гагарин». Он оснащался комплексом технических систем, позволяющих испытателям полностью выполнять с любым космическим аппаратом весь объем работ, доступных самому современному на тот момент времени стационарному научно-измерительному пункту. Дальность, надежность приема и передачи всех видов информации обеспечивали мощные передающие и высокочувствительные приемные устройства с параметрическими усилителями, которые охлаждались жидким гелием, производимым тут же, на судне. Зеркала приемопередающих антенн, работающих остронаправленно в широком диапазоне частот, имели диаметры 12 и 25 м (масса антенных устройств 180 и 240 т соответственно). Всеми командно-измерительными средствами, и антеннами-тяжеловесами, операторы управляли централизованно. Для этого, а также для обработки результатов измерений на «КЮГ» имелись высокопроизводительные вычислительные машины. Судно, водоизмещением 45000 т (для сравнения, авианосец «Адмирал флота Советского Союза Кузнецов» имеет водоизмещение 43000 т, а крейсер «Петр Великий» — 23750 т) обладало отличными мореходными качествами. Оно могло эксплуатироваться во всех районах Мирового океана, включая полярные (для этого корпус усилен ледовыми подкреплениями). «КЮГ» имел специальный успокоитель, уменьшающий при 7-балльном шторме бортовую качку более чем в три раза. Судно имело достаточно комфортные условия для работы и отдыха. Во всех 86 лабораториях и 210 каютах имелись системы кондиционирования. И это на судне 1971 года! Также на борту были пассажирские и грузовые лифты, салоны отдыха, спортзал, плавательные бассейны, библиотека, кинотеатр, первоклассное медицинское оборудование в уютном лазарете.

В 1975-1977 гг. ветераны флотилии «Долинск», «Бежица» и «Ристна» были возвращены в торговый флот. Их сменили во второй половине семидесятых годов новые исследовательские лайнеры, названные именами героев-космонавтов П. Беляева, В. Волкова, Г. Добровольского, В. Пацаева. Эти суда оснащались более совершенной техникой, чем их предшественники, и надежно обеспечивали прием телеметрической и научной информации от любых ИСЗ, передачу ее в соответствующие «профилю работы» спутников координационно-вычислительные центры, двустороннюю телефонную и телеграфную связь с экипажами пилотируемых космических кораблей и научно-исследовательских комплексов.

Таким был «звездный флот» Советского Союза. Все закончилось вместе с распадом страны. Флагман, «Космонавт Юрий Гагарин», перешел в ведение украинского Министерства обороны, и больше не эксплуатировался. Базировалось судно в порту Южный, вблизи Одессы. В 1996 году уникальное судно было отдано на металлолом австрийской фирме «Зюйд Меркур» по постыдной цене — 170 $ за тонну. Еще раньше закончил свой путь «Космонавт Владимир Комаров». В 1994 году судно было списано и также продано на металлолом индусам. Морские пункты «Космонавт Владимир Волков», «Космонавт Георгий Добровольский», «Космонавт Павел Беляев» в 1992 году встали на прикол, а в 1994 года их списали.

Читайте также:  Школьный конкурс про космос

Спаслось только НИС «Космонавт Виктор Пацаев» водоизмещением 9180 т. В 2001 году судно пришло из Санкт-Петербурга в Калининград, где с 2001 года ошвартовано у причала Музея мирового океана на Набережной исторического флота. В этом году судно признали объектом культурного наследия.

Последние годы единственным научно-исследовательским судном, обеспечивающим летно-конструкторские испытания и обработку новых образцов ракетно-космической техники, был «Маршал Крылов», вступивший в строй 1987 году. 23 октября 2015 года корабль отбуксировали для ремонта в один из СРЗ, г. Владивостока.

Источники:
Краснов В., Балабин В. История научно-исследовательского флота Российской академии наук. М.: Наука, 2005. С. 164-165, 173-183.
Безбородов В., Жаков А. Суда космической службы. М.: Судостроение, 1980. С. 28-56.
Покровский Б. Звездная флотилия // Морской сборник. 1994. №4. С.82-86.
Потехина А. Корабли звездной флотилии // Красная звезда. 03.11.2009.
Кретов В. Самарев И. История космического флота // Красная звезда. 22.09.2007.

Источник

Морской космический флот

«Космонавт Юрий Гагарин» — научно-исследовательское судно, флагман судов Службы космических исследований СССР. Построено на Балтийском судостроительном заводе в Ленинграде в 1971 году. Длина одиннадцатипалубного теплохода 231,6 м, ширина 32 м, мощность главного двигателя 14 000 кВт, скорость хода 18 узлов, водоизмещение 45 000 т. Экипаж 136 чел., состав экспедиции 212 чел. На борту 1250 помещений, в т.ч. 86 лабораторий. Было предназначено для решения задач управления и связи одновременно с несколькими КА и Центром управления полетом через КА «Молния». На борту судна 75 антенн, в т.ч. две антенны с параболическими отражателями диаметром 25 м. Судно могло находится в автономном плавании в течение 130 суток. Район работы – Атлантический океан.

Mорской космический флот — большой отряд советских экспедиционных судов и военных кораблей, принимавший непосредственное участие в создании ракетно-ядерного щита СССР, обеспечении летно-конструкторских испытаний космических; аппаратов, управлении полетами пилотируемых космических кораблей и орбитальных станций, запускаемых с советских полигонов. Суда Морского космического флота; участвовали; в ряде работ по международным космическим программам.

Идея создания морских измерительных пунктов была высказана академиком С.П. Королевым после успешного запуска первого искусственного спутника Земли, когда его ОКБ-1 приступило к практическому воплощению в жизнь программы полетов человека в Космос.

В 1959 году появилась необходимость осуществления контроля точности падения головных частей советских баллистических ракет при их испытательных запусках в центральную часть Тихого океана. С этой целью был создан первый плавучий измерительный комплекс в составе кораблей ВМФ СССР: «Сибирь», «Сахалин», «Сучан», «Чукотка». В качестве легенды этому соединению дали название « Тихоокеанская гидрографическая экспедиция-4 » (ТОГЭ-4).

Полным ходом шла работа по созданию первых автоматических межпланетных станций типа «Марс» и « Венера », пилотируемого космического корабля «Восток». Баллистики определили, что для осуществления контроля второго старта советских межпланетных космических станций с промежуточной орбиты, контроля включения тормозных двигателей космических кораблей для спуска с орбиты на территорию СССР, единственным районом измерений может быть экваториальная зона Атлантики. Как показали расчеты, при орбитальных полетах вокруг Земли из 16-ти суточных витков 6 проходят над Атлантическим океаном и «невидимы» с наземных измерительных пунктов на территории СССР. Реально назрел вопрос о создании специализированных судов, способных контролировать полеты пилотируемых кораблей и осуществлять необходимую радиосвязь с их экипажами из акватории Атлантики.

В срочном порядке была установлена телеметрическая радиоаппаратура на трех торговых судах Министерства морского флота СССР: «Ворошилов», «Краснодар» и «Долинск». Экспедиции этих судов, укомплектованные инженерами и техниками подмосковного научно-исследовательского института, в августе 1960 года вышли в свои первые рейсы. После работ по запускам первых автоматических межпланетных станций и контролю полетов беспилотных космических кораблей, эти суда обеспечили прием телеметрической информации при посадке космического корабля «Восток» с первым космонавтом Планеты Ю.А. Гагариным. К работе по телеметрическому контролю за полетом космического корабля «Восток» над Тихим океаном были привлечены три корабля ТОГЭ-4.

При последующих запусках автоматических межпланетных станций и космических кораблей суда Атлантического комплекса и корабли в Тихом океане привлекались к работам по аналогичной схеме.

В 1963 году юридически было зафиксировано создание «Морского космического флота» в едином с наземным командно-измерительным комплексом СССР контуре управления космическими полетами.

В 1969 году для руководства и управления «Морским космическим флотом» в Москве создана «Служба космических исследований Отдела морских экспедиционных работ Академии наук СССР» (СКИ ОМЭР АН СССР).

Они воплотили в себе новейшие достижения отечественной науки и техники и были способны самостоятельно выполнять все задачи, связанные с обеспечением полетов различных космических аппаратов, пилотируемых космических кораблей и орбитальных станций.

С 1977 по 1979 годы в состав «Морского космического флота» вошло еще четыре телеметрических судна, на бортах которых были начертаны имена героев-космонавтов: «Космонавт Владислав Волков», «Космонавт Георгий Добровольский», «Космонавт Павел Беляев» и «Космонавт Виктор Пацаев». Три крупных судна «Службы» были приписаны Черноморскому морскому пароходству СССР в Одессе, телеметрические суда v Балтийскому морскому пароходству СССР в Ленинграде.

К 2004 году от «Морского космического флота» сохранилось только два судна в г.Калининграде: «Космонавт Георгий Добровольский» и «Космонавт Виктор Пацаев» (последний открыт в качестве музея на плаву у причала Музея мирового океана). Владелец этих судов, периодически привлекаемых к работам по МКС — «Росавиакосмос». Остальные девять судов «Морского космического флота» досрочно списаны и утилизированы (в т.ч. приватизированные Украиной НИС «АСК» и НИС «КЮГ» проданы по цене металлолома В Индию в 1996 г.).

Читайте также:  Аппликация космос с дошкольниками

Тихоокеанский плавучий измерительный комплекс совершенствовался по мере развития советской ракетно-космической техники. Вслед за ТОГЭ-4 в 1963г. появилась ТОГЭ-5 (ЭОС «Чажма», ЭОС «Чумикан» ). В 1984г.,1990г. флот пополнился корабельными измерительными комплексами «Маршал Неделин», «Маршал Крылов».

В составе Тихоокеанского флота под флагом ВМФ СССР несли службу восемь кораблей, шесть из них списаны и утилизированы, один продан на переоборудование. В составе Тихоокеанского флота России несет службу КИК «Маршал Крылов».

Научно-исследовательские суда, участвующие в программах освоения космического пространства, составляют особый класс океанских судов. У них все необычно: архитектурный облик, оборудование помещений, условия плавания.

Архитектурный облик судов космического флота определяется прежде всего мощными конструкциями антенных систем. Например, такие архитектурные элементы, как 25-метровые зеркала «Космонавта Юрия Гагарина» или 18-метровые белоснежные шары радиопрозрачных укрытий для антенн на «Космонавте Владимире Комарове» привлекают к себе внимание в первую очередь и сразу же создают преобладающее впечатление. Более внимательный взгляд обнаруживает десятки других антенн, самых разнообразных по размерам и конструкции. Такого обилия антенн нет, конечно, ни на одном судне другого назначения.

Антенны и научное оборудование, которым оснащены экспедиционные лаборатории НИС, предъявляют специфические требования к мореходным качествам и техническим характеристикам этих судов. Высокие мореходные качества нужны судам для выполнения научных задач, которые приходится решать во всех районах Мирового океана, в любое время года и любую погоду. Экспедиционные суда должны идти в те точки океана, которые определены баллистическими расчетами, и выполнять там назначенную работу. Они не могут подчас даже свободно выбирать свой курс во время сеанса связи, чтобы облегчить плавание при волнении моря: курс жестко определяется задачами сеанса, направлением трассы полета и углами обзора корабельных антенн. Суда должны хорошо управляться, особенно на малых скоро-стях и в дрейфе — возможных режимах движения во время сеансов связи.

Автономность характеризует способность судна длительное время находиться в море без захода в порты для пополнения запасов топлива, смазочных масел, пресной воды и провизии. Высокая автономность позволяет судну не прерывать программу сеансов связи, не тратить время на переходы из района работы в порт для пополнения судовых запасов. При большой, как правило, удаленности этих районов, потеря времени на переходы была бы значительной и, возможно, потребовала бы увеличения числа научно-исследовательских судов, обеспечивающих в океане космические полеты.

Автономность судов космического флота ограничивается, главным образом, запасами пресной воды и провизии. Например, средние по водоизмещению суда типа «Космонавт Владислав Волков» могут находиться в плавании, не пополняя запасов провизии, 90 суток, запас пресной воды на них рассчитан на 30 суток. Для достижения высокой автономности на судах оборудованы вместительные провизионные кладовые, оснащенные мощным холодильным оборудованием. Автономность по запасу воды можно увеличить, используя имеющиеся на судах опреснительные установки.

Суда космического флота часто проводят сеансы связи, находясь в дрейфе или на якоре. Поэтому топливо для машин тратится главным образом на переходах. Запасы топлива определяют другую важную характеристику судна — дальность непрерывного плавания. Имея большую дальность плавания, судно может не прерывать работу с космическими объектами для захода в порт, чтобы принять топливо. Это, так же как и автономность, по существу увеличивает эффективность использования космического флота. Чтобы судить о реальных величинах дальности плавания, укажем, например, что для «Космонавта Юрия Гагарина» она составляет 20 тысяч миль. Это расстояние лишь немногим меньше, чем воображаемый океанский переход вокруг земного шара по экватору.

Следующая характеристика НИС — остойчивость и связанные с ней параметры качки на волнении. Радиотехническая и электронная аппаратура, составляющая основу экспедиционного оборудования НИС космического флота, имеет очень невыгодное для остойчивости распределение весов. Наиболее тяжелые элементы этой аппаратуры -антенны с их фундаментами и мощными электрическими приводами -располагаются высоко над палубами и надстройками, в то время как во внутренних помещениях находятся в основном электронные блоки с относительно небольшими весами. Например, четыре главные космические антенны научно-исследовательского судна «Космонавт Юрий Гагарин» вместе с фундаментами имеют общий вес около 1000 т и установлены на палубах, расположенных на 15-25м выше уровня ватерлинии, так что центр масс судна смещается значительно вверх, что требует дополнительных мер для сохранения остойчивости.

Трудности с остойчивостью возникают также из-за большой парусности космических антенн. Например, четыре параболических зеркала «Космонавта Юрия Гагарина» диаметром по 12 и 25м имеют общую площадь 1200 м 2. Будучи поставлены «на ребро» и обращены на борт (характерное положение для начала связи), такие антенны превращаются в гигантские паруса, стремящиеся опрокинуть судно. Поэтому сеансы связи не проводятся при сильном ветре. Само собой разумеется, что, когда антенны в промежутках между сеансами связи застопорены в положении «по-походному» (направлены в зенит), их парусность во много раз меньше и уже не представляет опасности для плавания.

Качка судна на волнении создает значительные помехи для сеансов связи. Во-первых, она приводит к возрастанию нагрузок на различные механизмы (например, антенного комплекса) и ухудшает точность их действия. Во-вторых, качка снижает работоспособность научного и инженерно-технического персонала, участвующего в проведении сеансов связи. Поэтому уменьшение качки — очень важная задача, учитываемая при создании научно-исследовательских судов.

Радиотехнические системы, размещенные на научно-исследовательских судах, предъявляют повышенные требования к прочности и жесткости судового корпуса. Необходимы подкрепления в местах установки массивных антенн и других элементов оборудования, обладающих значительным весом. При установке на судне нескольких остронаправленных антенн повышенная жесткость корпуса служит необходимым условием их совместной работы. Для плавания в приполярных широтах суда космического флота имеют ледовые подкрепления корпуса.

Источник

Adblock
detector