Меню

Наука изучающая параллельные вселенные

Параллельные вселенные — красивая теория или реальность?

В 1954 году молодой кандидат в докторантуру Принстонского университета по имени Хью Эверетт III придумал радикальную идею: что если существуют параллельные вселенные, подобные нашей. Все эти вселенные связаны с нашей и наша Вселенная отделяется от других. Внутри этих параллельных вселенных наши войны имели разные результаты, чем те, которые мы знаем. Виды, которые вымерли в нашей вселенной, эволюционировали и адаптировались в других. В других вселенных мы, люди, могли исчезнуть.

Эта мысль пугает разум, и все же она по-прежнему понятна. Понятия параллельных вселенных, которые напоминают наши собственные, появились в произведениях научной фантастики и использовались в качестве объяснений для метафизики. Но почему молодой потенциальный физик, возможно, рискует своей будущей карьерой, создав теорию о параллельных вселенных?

Теорией множественности миров Эверетт пытался ответить на довольно липкий вопрос, связанный с квантовой физикой: почему квантовая материя ведет себя беспорядочно? Квантовый уровень — это самая молодая наука, изучающая самый крохотный уровень организации материи, обнаруженный до сих пор. Изучение квантовой физики началось в 1900 году, когда физик Макс Планк впервые представил концепцию в научный мир. Изучение излучения Планком привело к некоторым необычным выводам, которые противоречили классическим физическим законам. Эти данные свидетельствуют о том, что во Вселенной действуют другие законы, действующие на более глубоком уровне, чем тот, который мы знаем.

Принцип неопределенности Гейзенберга

Физики, изучающие квантовый уровень, заметили некоторые странные вещи в этом крошечном мире. Во-первых, частицы, которые существуют на этом уровне, имеют способность принимать разные формы произвольно. Например, ученые наблюдали фотоны — крошечные пакеты света, действующие как частицы и волны. Даже один фотон демонстрирует это изменение формы. Представьте, если бы вы выглядели и действовали как сплошной человек, когда друг взглянул на вас, но когда он снова оглянулся, вы бы приняли газообразную форму.

Это стало известно как принцип неопределенности Гейзенберга. Физик Вернер Гейзенберг предположил, что, наблюдая квантовую материю, мы влияем на поведение этого вещества. Таким образом, мы никогда не можем быть полностью уверены в природе квантового объекта или его параметров, таких как скорость и местоположение.

Эта идея поддерживается копенгагенской интерпретацией квантовой механики. По словам датского физика Нильса Бора, эта интерпретация говорит о том, что все квантовые частицы не существуют ни в одном состоянии, ни во всех возможных состояниях сразу. Сумма возможных состояний квантового объекта называется его волновой функцией. Состояние объекта, существующего во всех его возможных состояниях сразу, называется суперпозицией.

Согласно Бору, когда мы наблюдаем квантовый объект, мы влияем на его поведение. Наблюдение нарушает суперпозицию объекта и, по сути, заставляет объект выбирать одно состояние из его волновой функции. Эта теория объясняет, почему физики проводили противоположные измерения одного и того же квантового объекта: объект выбирал разные состояния при различных измерениях.

Интерпретация Бора была широко принята и по-прежнему учитывается большим количеством ученых квантового сообщества. Но в последнее время теория множественности миров Эверетта приобретает серьезное внимание.

Теория множественности миров

Молодой Хью Эверетт согласился с тем, что высказал очень уважаемый физик Нильс Бор о квантовом мире. Он согласился с идеей суперпозиции, а также с понятием волновых функций. Но Эверетт не согласился с Бором в одном жизненно важном отношении.

Для Эверетта измерение квантового объекта не приводит его к одному понятному состоянию. Вместо этого измерение квантового объекта приводит к фактическому расколу во Вселенной. Вселенная буквально дублируется, разбиваясь на одну вселенную для каждого возможного результата измерения. Например, говорят, что волновая функция объекта является как частицей, так и волной. Когда физик измеряет частицу, возможны два возможных результата: она будет либо измеряться как частица, либо как волна. Это различие делает теорию множественности миров Эверетта конкурентом копенгагенской интерпретации объяснения квантовой механики.

Когда физик измеряет объект, Вселенная делится на две отдельные вселенные, чтобы учесть каждый из возможных результатов. Итак, ученый в одной вселенной обнаруживает, что объект был измерен в волновой форме. Тот же ученый в другой вселенной измеряет объект как частицу. Это также объясняет, как одна частица может быть измерена более чем в одном состоянии.

Как бы удивительно это не звучало, интерпретация Эверетта имеет последствия вне квантового уровня. Если действие имеет более чем один возможный результат, то, если теория Эверетта верна, вселенная распадается, когда это действие будет предпринято. Это справедливо даже тогда, когда человек решает не предпринимать никаких действий.

Это означает, что если вы когда-либо оказались перед выбором, то во вселенной, параллельной нашей, вы сделали иной выбор. Это лишь одна из причин, по которой некоторые считают, что интерпретация множественности миров вызывает беспокойство.

Еще один тревожный аспект этой теории заключается в том, что это подрывает наше понятие времени как линейное. Представьте себе временную линию, показывающую историю второй мировой войны. Вместо прямой линии, показывающей заметные события, идущие вперед, временная линия, основанная на интерпретации множественности миров, покажет каждый возможный результат каждого предпринятого действия. Оттуда последует дальнейший хронологический анализ всех возможных результатов предпринятых действий.

Но человек не может знать о своих других личностях — или даже о его смерти, — которые существуют в параллельных вселенных. Итак, как мы можем узнать, правильна ли теория множественности миров? Уверенность в том, что теоретическая интерпретация возможна, возникла в конце 1990-х годов из мысленного эксперимента — воображаемого эксперимента, который теоретически доказывал или опровергал идею, называемую квантовым самоубийством.

Читайте также:  Если он думает что он центр вселенной

Этот мысленный эксперимент возобновил интерес к теории Эверетта, которая на протяжении многих лет считалась мусором. Поскольку множественность миров оказалась возможной, физики и математики стремились исследовать последствия этой теории в глубине. Но интерпретация многих миров — не единственная теория, которая стремится объяснить вселенную. И это не единственное, что предполагает наличие вселенных параллельных нашей.

Параллельные Вселенные: струны и строки

Теория многих миров и копенгагенская интерпретация — не единственные конкуренты, пытающиеся объяснить базовый уровень Вселенной. На самом деле квантовая механика — это даже не единственное поле в физике, которое ищет такое объяснение. Теории, появившиеся после изучения субатомной физики, по-прежнему остаются теориями. Это привело к тому, что поле исследования было разделено во многом так же, как мир психологии. Теории имеют сторонников и критиков, а также психологические рамки, предложенные Карлом Юнгом, Альбертом Эллисом и Зигмундом Фрейдом.

Поскольку их наука была развита, физики занимаются обратным проектированием Вселенной — они изучили, что можно наблюдать, если двигаться все к меньшим уровням физического мира. Делая это, физики пытаются достичь конечного и самого базового уровня. Надеюсь, именно этот уровень послужит основой для понимания всего остального.

Следуя своей знаменитой теории относительности, Альберт Эйнштейн всю оставшуюся жизнь искал тот последний уровень, который отвечал бы на все физические вопросы. Физики ссылаются на эту фантомную теорию как на теорию всего. Квантовые физики считают, что они находятся на пути к поиску этой окончательной теории. Но другая область физики считает, что квантовый уровень не является наименьшим уровнем, поэтому он не может обеспечить теорию всего.

Источник

Теория мультивселенной на доступном языке

Все что мы можем сказать о зарождении вселенной, которую мы сейчас видим, это то что она появилась более 13 миллиардов лет назад. Как это произошло? Все довольно просто, но очень интересно. За миллиардные доли секунды до Большого взрыва, вселенная была раскалена до неимоверной температуры, при которой даже атомы не могли формироваться, так как субатомные частицы, такие как протоны и нейтроны, двигались с бешеной скоростью, не позволяя атомам, какими мы знаем их сейчас, родиться. Как только эти доли секунд прошли, пространство стало экспоненциально расширяться. Со временем вся наша вселенная стала остывать и пролетающие мимо электроны сталкивались с протонами, образуя атомы, впоследствии создававшие звезды. В недрах этих первых звезд, за счет сумасшедшей температуры, вызывающей термоядерную реакцию, зародились атомы, служащие строительным материалом всей нашей вселенной и даже самих нас. Подумать только, мы, люди, сотканы из частичек, появившихся в центрах этих пылающих монстров. Впоследствии в скоплении звезд, называемом нами «Млечный путь», образовалась звезда, которую мы именуем Солнце, создавшее материал, построивший все известные нам 7 планет нашей звездной системы.

Но как понять концепцию мультивселенной или же множественной вселенной? По одной из существующих ныне гипотез о состоянии вселенной, которых насчитывается множество, в космосе насчитывается бесконечное количество вселенных, которые спонтанно рождаются в нем. Но где же эти вселенные находятся, как это понимать? Опять же, все довольно просто и очень интересно. По задумке создателей этой гипотезы, новые «Большие взрывы» происходят за пределами нашей вселенной. Для начала стоит понять о том, что мы подразумеваем под словом «вселенная». Вселенная изначально означало «все», в глобальном смысле этого слова, каждая галактика, планета, человек и даже наши мысли являются частью этого «всего». Но впоследствии ученые отказались от такого значения из-за того, что он звучит не совсем научно. Теперь же вселенной принято называть отдельный регион, в котором расширяется космос после Большого взрыва. Такое менее обширное понятие дает возможность для существования нашей теории о множественной вселенной. Но где же эти вселенные находятся? Хороший вопрос, но на него мы уже дали ответ. Как было сказано нами ранее, за пределами нашей вселенной, где у нас нет возможности видеть. Теперь, когда мы понимаем, что вселенная это не все существующее, а лишь определенный регион космоса, это довольно проще представить у себя в голове. Или же нет. Для большинства людей это все равно остается довольно непонятно, так что попробуем описать это более простыми словами для наглядности. Для того, чтобы нам, людям, получать информацию, необходим сигнал, он может быть разной природы, но самым простым и понятным является световой сигнал. То есть, для того чтобы увидеть что-то нам необходимо, чтобы до наших глаз, или же до наших приборов дошел свет. Но почему же мы не можем увидеть другие вселенные? Для того, чтобы ответить на этот вопрос, стоит вернуться в наши школьные годы, для кого-то это будет слегка трудно, но поверьте, это того стоит. Все мы помним, как на уроке физики познакомились со светом. И все мы помним о свете одну его уникальную особенность, скорость. Каждый из нас слышал, «Ничто не может передвигаться со скоростью свыше скорости света в вакууме», помните? Так вот, это неправда. Понимаю, звучит слегка шокирующе, но погодите, дайте мне это объяснить. Эта формулировка не совсем верна, ее стоит презентовать с большей аккуратностью, как юрист, звучать она должна следующим образом: «Ничто в космосе не может передвигаться со скоростью свыше скорости света в вакууме», так будет правильнее. Но если задуматься над этой фразой, станет понятно, что, действительно, в космосе ничто не может передвигаться свыше этой заветной скорости света, но сам космос может делать что ему вздумается. Космос не подвластен тому, чему учили нас в школах. Как мы уже знаем, космос находится в стадии постоянного расширения и расширение это происходит со скоростью превышающей скорость света, а в некоторых местах в несколько раз. Чтобы до конца представить модель мультивселенной, позвольте провести аналогию. Все мы хоть раз видели сёрферов, пытающихся прокатиться на волне. В данном примере наш свет и есть этот сёрфер, а вода, является космосом. Так вот, представим, что начался отлив, а наш бедолага не успел вылезти на берег. Он будет стараться что есть мочи доплыть до суши, то же пытается сделать и свет, он словно плывет сквозь космос, пытаясь достичь нас. Но что если скорость воды будет больше скорости нашего сёрфера? Все вполне очевидно, несчастный человек никогда не сможет доплыть до берега. То же происходит и во вселенной, при расширении космоса со скоростью, превышающей скорость движения света, свет так никогда и не сможет нас достичь, так как его «уносит течением», вызванным расширением космоса. Теперь все встало на свои места, нашу вселенную можно представить в виде постоянно расширяющегося пузыря, находящегося рядом с другими пузырями, но так как космос между ними расширяется быстрее, чем движется свет, то свет от другой вселенной просто не может достичь нас, так же, как и сёрфер не может достичь берега при сильном отливе.

Читайте также:  Как сформулировать вопросы для вселенной

Источник

Мультивселенная

Мультивселенная – научная концепция предполагающая наличие множества параллельных вселенных. Существует ряд гипотез, описывающих многообразие этих миров, их свойства и взаимодействия.

Причины возникновения гипотезы

Успех квантовой теории неоспорим. Ведь она вместе с общей теорией относительности представляет все фундаментальные законы физики, известные современному миру. Несмотря на это квантовая теория все же ставит ряд вопросов, на которые до сих пор нет определенных ответов. Одним из них является известная «проблема кота Шредингера», которая наглядно демонстрирует зыбкий фундамент квантовой теории, что формируется на предсказаниях и вероятности того или иного события. Речь идет о том, что особенностью частицы, согласно квантовой теории, является существование ее в состоянии равном сумме всех ее возможных состояний. В таком случае если применить данный закон к квантовому миру, то окажется что кот – это сумма состояния живого и мертвого кота!

И хотя законы квантовой теории успешно используются при применении таких технологий как радары, радио, мобильные телефоны и интернет, приходится мириться с указанным выше парадоксом.

Множественные Вселенные в представлении художника

В попытке разрешить квантовую проблему была сформирована так называемая «копенгагенская теория», согласно которой состояние кота становится определенным, когда мы открываем коробку и наблюдаем его состояние, а до того оно неопределенное. Однако, применение копенгагенской теории, допустим, к Плутону, означает, что Плутон существует лишь с того момента как его открыл американский астроном Клайд Томбо 18 февраля 1930-го года. Только в этот день зафиксировалась волновая функция (состояние) Плутона, а остальные все схлопнулись. Но известно, что возраст Плутона значительно превышает отметку в 3,5 млрд лет, что указывает на проблемы копенгагенской интерпретации.

Множественность миров

Другой вариант решения квантовой проблемы предложил американский физик Хью Эверетт в 1957-м году. Он сформулировал так называемую «многомировую интерпретацию квантовых миров». Согласно ей каждый раз, когда объект переходит из неопределенного состояния в определенное – происходит расщепление этого объекта на количество вероятных состояний. Приводя в пример кота Шредингера, когда мы открываем коробку, появляется вселенная со сценарием, где кот мертв и появляется вселенная, где он остается жив. Таким образом, он находится в двух состояниях, но уже в параллельных мирах, то есть все волновые функции кота остаются действительными и никакая из них не схлопывается.

Земля — это совокупность всех вариантов событий на ней

Именно эту гипотезу множество писателей фантастов использовали в своих научно-фантастических произведениях. Множественность параллельных миров предполагает наличие ряда альтернативных событий, из-за которых история приняла иной ход. К примеру, в каком-то мире непобедимая испанская армада не была разгромлена или Третий рейх победил во Второй мировой войне.

Более современная интерпретация этой модели объясняет невозможность взаимодействия с другими мирами отсутствием когерентности волновых функций. Грубо говоря, в какой-то момент волновая функция нашей Вселенной перестала колебаться в такт с функциями параллельных миров. Тогда вполне возможно, что мы можем сосуществовать в квартире с «сожителями» из иных вселенных, не взаимодействуя с ними никоим образом, и, равно как и они, быть убежденными в том, что именно наша Вселенная настоящая.

На самом деле термин «многомировая» — не совсем подходящей для данной теории, так как она предполагает один мир с множеством вариантов событий, происходящих одновременно.

Большинство физиков-теоретиков согласны с тем, что данная гипотеза невероятно фантастическая, однако она объясняет проблемы квантовой теории. Впрочем, ряд ученых не считают многомировую интерпретацию научной, так как она не может быть подтверждена или опровержима при помощи научного метода.

Квантовые связи, пронизывающие наш мир в представлении художника

В квантовой космологии

Сегодня гипотеза о множественности миров вновь возвращается на научную сцену, так как ученые намерены использовать квантовую теорию не для каких-либо объектов, а применить по отношению ко всей Вселенной. Речь идет о так называемой «квантовой космологии», которая, как может показаться с первого взгляда, несет абсурд даже в своей формулировке. Вопросы данной научной области связаны с зарождением Вселенной. Мизерные же размеры Вселенной на первых этапах ее формирования вполне согласуются с масштабами квантовой теории.

В таком случае, если размеры Вселенной были порядка элементарных частиц, то применив к ней квантовую теорию, мы также можем получить неопределенное состояние Вселенной. Последнее подразумевает наличие других вселенных, находящихся в различных состояниях с разной вероятностью. Тогда состояния всех параллельных миров в сумме дают одну единственную «волновую функцию Вселенной». В отличие от многомировой интерпретации квантовые вселенные существуют раздельно.

Читайте также:  От атома до всей вселенной масштаб

Как известно, существует проблема тонкой настройки Вселенной, которая обращает внимание на то, что физические фундаментальные константы, задающие основные законы природы в мире, подобраны идеально для существования жизни. Будь масса протона немного меньше, формирование элементов тяжелее водорода было бы невозможным. Это проблема может быть решена при помощи модели мультивселенной, в которой реализуется множество параллельных вселенных с различными фундаментальными константами. Тогда вероятность существования некоторых из этих миров мала и они «умирают» вскоре после зарождения, например, сжимаются или разлетаются. Другие же, константы которых формируют не противоречивые законы физики, с большой вероятностью остаются стабильными. Согласно этой гипотезе, мультивселенная включает большое количество параллельных миров, большинство из которых являются «мертвыми», и лишь небольшое число параллельных вселенных позволяет им существовать длительное время, и даже дает право на наличие разумной жизни.

В теории струн

Черные дыры — путь к другим Вселенным в теории струн

Одной из наиболее перспективных областей теоретической физики является теория струн. Она занимается описанием квантовых струн – протяженных одномерных объектов, колебание которых представляется нам в виде частиц. Первоначальное призвание данной теории состоит в том, чтобы объединить две фундаментальные теории: общую теорию относительности и квантовую теорию. Как оказалось позже, сделать это можно несколькими способами, в результате чего образовалось несколько теорий струн. В середине 1990-х годов ряд физиков-теоретиков обнаружили, что эти теории являются различными случаями одной конструкции, позже названой как «М-теория».

Ее особенность заключается в существовании некой 11-мерной мембраны, струны которой пронизывают нашу Вселенную. Однако мы живем в мире с четырьмя измерениями (три координаты пространства и одна временная), куда же деваются другие измерения? Ученые предполагают, что они замыкаются сами на себе в самых маленьких масштабах, которые пока не удается пронаблюдать, в силу недостаточного развития технологий. Из этого утверждения вытекает иная сугубо математическая проблема – возникает большое число «ложных вакуумов».

Простейшее объяснение этой свертки ненаблюдаемых нами пространств, а также наличие ложных вакуумов – мультивселенная. Физики, занимающиеся теорий струн, опираются на утверждение о том, что существует огромное число других вселенных, в которых не только другие физические законы, но также и иное количество измерений. Таким образом, мембрану нашей Вселенной в упрощенном виде можно представить как сферу, пузырь, на поверхности которого обитаем мы, и 7 измерений которого находятся в «свернутом» состоянии. Тогда наш мир вместе с другими вселенными-мембранами – что-то вроде множества мыльных пузырей, что плавают в 11-мерном гиперпространстве. Мы же, существуя в 3-хмерном пространстве, и не можем выбраться за его пределы, а потому и не имеем возможности взаимодействовать с иными вселенными.

Как уже упоминалось ранее, большинство параллельных миров, вселенных – мертвы. То есть в силу нестабильных или непригодных для жизни физических законов их вещество может быть представлено, например, лишь в виде бесструктурного скопления электронов и нейтрино. Причиной тому разнообразие возможных квантовых состояний частиц, иные значения фундаментальных констант и другое количество измерений. Примечательно, что такое предположение не противоречит принципу Коперника, утверждающего, что наш мир не уникален. Так как хоть и в малом количестве, но могут существовать миры, физические законы которых, несмотря на свое отличие от наших, все же допускают формирование сложных структур и зарождение разумной жизни.

Состоятельность теории

Хотя гипотеза о мультивселенной и выглядит как сценарий для научно-фантастической книги, она имеет лишь один недостаток – ученым не представляется возможным доказать или опровергнуть ее при помощи научного метода. Но за ней стоит сложная математика и на нее опирается ряд значимых и перспективных физических теорий. Аргументы в пользу мультивселенной представлены следующим списком:

  • Является фундаментом для существования многомировой интерпретации квантовой механики. Одной из двух передовых теорий (наряду с копенгагенской интерпретацией), решающих проблему неопределенности в квантовой механике.
  • Объясняет причины существования тонкой настройки Вселенной. В случае с мультивселенной, параметры нашего мира – лишь один из множества возможных вариантов.
  • Является так называемым «ландшафтом теории струн», так как решает проблему ложных вакуумов и позволяет описать причину, по которой определенное количество измерений нашей Вселенной сворачиваются.

Существование множественных миров доказывает случайность существования жизни

  • Поддерживается инфляционной моделью Вселенной, которая наилучшим образом объясняет ее расширение. На ранних этапах формирования Вселенной, вероятнее всего она могла быть разделена на две вселенные и более, каждая из которых эволюционировала независимо от другой. На теории инфляции строится современная стандартная космологическая модель Вселенной — Лямбда-CDM.

Шведский космолог Макс Тегмарк предложил классификацию различных альтернативных миров:

  1. Вселенные, находящиеся за пределами нашей видимой Вселенной.
  2. Вселенные с иными фундаментальными константами и числами измерений, которые, к примеру, могут располагаться на других мембранах, согласно М-теории.
  3. Параллельные вселенные, возникающие согласно многомировой интерпретации квантовой механики.
  4. Конечный ансамбль – все возможные вселенные.

О дальнейшей судьбе теории о мультивселенной пока нечего сказать, но на сегодня она занимает почетное место в космологии и теоретической физике, и поддерживается рядом выдающихся физиков современности: Стивен Хокинг, Брайан Грин, Макс Тегмарк, Митио Каку, Алан Гут, Нил Тайсон и другие.
‘ alt=»yH5BAEAAAAALAAAAAABAAEAAAIBRAA7 — Мультивселенная» title=»Мультивселенная»>

Похожие статьи

Понравилась запись? Расскажи о ней друзьям!

Источник

Adblock
detector