Меню

Нейроны головного мозга вселенная

Похожа ли Вселенная на мозг?

Если внимательно посмотреть на космическую паутину – структуру Вселенной, которая состоит из массивных нитей галактик, разделенных между собой гигантскими пустотами – и сеть нейронов в мозге человека, можно заметить некоторое сходство. Но насколько вообще корректно подобное сравнение? Как оказалось, описание человеческого мозга как трехфунтовой Вселенной, возможно, намного ближе к истине, чем может показаться. Человеческий мозг, при весе примерно в три фунта (около 1300 кг) содержит около 100 миллиардов нейронов, а количество связей в нем больше, чем количество галактик во Вселенной. Мозг – это командный центр всего, что мы думаем, чувствуем и делаем. И когда астрофизик Франко Вацца и нейробиолог Альберто Фелетти сравнили эти две структуры численно, сходство стало еще более поразительным. Пожалуй, не удивительно, что оно наводит на самые разные мысли, вплоть до предположения о том, что мы живем в симуляции.

Слева: увеличенный участок мозжечка головного мозга, полученный с помощью электронной микроскопии; справа: участок космологического моделирования с расширением 300 миллионов световых лет с каждой стороны.

Самый сложный орган тела человека

Человеческий мозг – самый сложный объект во Вселенной. Он отвечает за все, что вы делаете, думаете, чувствуете и говорите. Иными словами мозг делает вас тем, кто вы есть, и позволяет заниматься своей повседневной деятельностью.

Мозг среднестатистического взрослого человека содержит около 100 миллиардов клеток – нейронов. Каждая из них связана примерно с 1000 другими, а это 100 триллионов соединений. Так что если вы поставите себе цель сосчитать каждую клетку в мозге одного человека, вам потребуется более 3000 лет.

Примечательно и то, что каждая отдельная часть мозга играет свою собственную роль, позволяя нам думать, хранить воспоминания, двигать руками и ногами, чувствовать запахи, видеть и слышать звуки окружающего мира, а также поддерживать функции многих органов в теле. По меньшей мере 100 триллионов нейронных связей группируются в иерархическую сеть узлов, нитей и взаимосвязанных нейронных кластеров, которые и формируют наши сложные мысли, чувства и эмоции. Но эти нейроны составляют менее 25% массы мозга, а оставшиеся 75% – вода.

Мозг и правда похож на Веленную. Или нам только кажется?

По странному совпадению, наблюдаемая Вселенная также содержит около 100 миллиардов галактик. Шаткое равновесие между притяжением гравитации и ускоренным расширением Вселенной образует космическую паутину, которая состоит из обычной и темной материи. Именно по этой причине некоторые ученые считают, что существует 50% шанс, что мы живем в симуляции. Подробнее читайте в нашем материале.

Примечательно, что скопления галактик образуются на пересечениях галактических нитей, оставляя между собой промежутки пустого пространства. Как это ни странно, но недавно ученые подсчитали, что только около 25% материи во Вселенной является видимой. Остальные 75% составляет таинственная темная материя.

Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подпишитесь на наш новостной канал в Google News, чтобы не пропустить ничего интересного.

Таинственная темная материя

В исследовании, которое опубликовано в научном журнале Frontiers in Physics, астрофизик Франко Вацца и нейробиолог Альберто Фелетти пишут о том, что «хотя соответствующие физические взаимодействия в вышеупомянутых двух системах принципиально отличаются друг от друга, полученные с помощью микроскопов и космических телескопов изображения удивительно похожи».

Слева на снимке – нейронные связи, справа – космическая паутина

В ходе работы исследователи внимательно изучили полученные изображения космической паутины и нейронных связей в мозге человека. Чтобы рассмотреть как можно больше деталей (а заодно выявить сходство), астрофизик из Болонского университета Франко Вацца и нейрохирург из Веронского университета Альберто Фелетти прибегли к методу под названием «анализ спектра мощности», который позволил им измерить силу крошечных флуктуаций во всем диапазоне пространственных масштабов – как моделирования галактик, так и участков мозжечка и коры головного мозга. Отметим, что «анализ спектра мощности» традиционно применяется в астрофизике и космологии для изучения крупномасштабного распределения галактик во Вселенной.

Читайте также:  Точное положение земли во вселенной

Исходя из общих черт космической паутины и нейронных связей, ученые составили сравнительную модель флуктуации вещества в обеих системах и изучили их структурные, морфологические и сетевые свойства. Как отмечают Вацца и Фелетти в пресс-релизе исследования, схожести в структуре Вселенной и нейронных связей в мозге также проявились в среднем количестве соединений в каждом узле и тенденции к кластеризации.

Наш анализ показал, что распределение колебаний в нейронной сети мозжечка в масштабе от одного микрометра до 0,1 миллиметра следует той же прогрессии, что и распределение материи в космической паутине, но, конечно, в более крупном масштабе — от 5 до 500 миллионов световых лет.

Почему нейронные связи и галактические нити похожи?

Возможно, уважаемый читатель захочет возразить: «если ученые сравнивают между собой такие сложные структуры как мозг и Вселенную, то почему бы не сравнить и другие, относительно похожие объекты?» По-видимому, исследователи учли подобные вопросы, а потому сравнили спектры мощности и других сложных систем, включая изображения ветвей деревьев, облаков и воды, но ни одно из них не приблизилось к соответствию нейронного и вселенского дуэта.

И все же, необходимо отметить, что спектры мощности не дают никаких намеков на сложность той или иной системы. Так что в ходе исследования ученые внимательно изучили сети обеих систем, сравнивая среднее число соединений на узел и то, как эти узлы группируются вместе.

Необходимо отметить, что сходства между космической паутиной и нейронной сетью возникают только тогда, когда исследователи сравнивают конкретный масштаб каждой системы.

«В очередной раз структурные параметры выявили неожиданные уровни согласования. Вероятно, связь внутри этих двух систем развивается по сходным физическим принципам, несмотря на поразительную и очевидную разницу между физическими силами, регулирующими галактики и нейроны», — слова Вранческо Фелетти из Веронского университета в Италии приводит английская The Independent.

Согласитесь, весьма впечатляет, что у космической паутины в наблюдаемой Вселенной больше общего с сетью нейронов в вашем мозге, чем с отдельными галактиками и звездами. А сложная сеть нейронов в мозге Homo Sapiens составляет лучшую пару с космической паутиной, чем отдельные клетки мозга между собой. А как вы думаете, почему нейронные связи и космическая паутина похожи? Ответ будем ждать здесь, а также в комментариях к этой статье.

Источник

Нейроны в мозге человека и сеть галактик оказались похожи

Астрофизик из Болонского университета и нейрохирург из Веронского университета сравнили сеть нейронных клеток в человеческом мозге с космической сетью галактик и обнаружили удивительные сходства между ними. Результаты исследования публикует журнал Frontiers in Physics.

Франко Вазза, астрофизик в Университете Болоньи и Альберто Фелетти, нейрохирург из Университета Вероны изучили сходство между двумя самыми сложными системами в природе: космической сетью из галактик и сетью нейронов в человеческом мозге.

Несмотря на существенную разницу в масштабе между двумя сетями, их анализ показал, что различные физические процессы в них могут создавать структуры. Причем они характеризуются одинаковыми уровнями сложности и самообслуживания.

Человеческий мозг функционирует благодаря своей широкой нейронной сети, которая, как считается, содержит около 69 млрд нейронов. С другой стороны, наблюдаемая Вселенная состоит из космической сети, состоящей как минимум из 100 млрд галактик. В обеих системах только 30% их массы составляют галактики и нейроны, которые (опять же, в обеих системах) образуют длинные волокна или узлы между ними. Наконец, в обеих системах 70% распределения массы или энергии состоит из компонентов, играющих явно пассивную роль. Речь идет о воде в мозге и темной энергии в наблюдаемой Вселенной.

Исходя из общих черт двух систем, исследователи сравнили моделирование сети галактик с участками коры головного мозга и мозжечка. Цель — изучить флуктуации вещества в столь разных масштабах.

«Мы рассчитали спектральную плотность обеих систем, — объясняет Франко Вацца. — Наш анализ показал, что распределение колебаний в нейронной сети мозжечка в масштабе от 1 мкрм до 0,1 мм следует той же прогрессии распределения материи в космической паутине. Конечно, в более крупном масштабе, от 5 млн до 500 млн световых лет».

Читайте также:  Открытие островной структуры вселенной реферат

Два исследователя также рассчитали некоторые параметры, характеризующие как нейронную сеть, так и космическую паутину: среднее количество соединений в каждом узле и тенденцию кластеризации нескольких соединений в соответствующих центральных узлах внутри сети. И снова структурные параметры выявили неожиданные уровни согласования. Вероятно, взаимосвязь внутри двух сетей развивается в соответствии с аналогичными физическими принципами, несмотря на поразительную и очевидную разницу между физическими силами, регулирующими галактики и нейроны, заключают ученые.

Источник

Физик: Вся Вселенная представляет собой нейронную сеть

«Идея определенно безумная, но достаточно ли она безумна, чтобы быть правдой? Это еще предстоит выяснить».

Не каждый день мы сталкиваемся с исследованием, которое пытается переопределить реальность.

Но в провокационной статье, загруженной на arXiv этим летом, профессор физики из Миннесотского университета в Дулуте по имени Виталий Ванчурин пытается переосмыслить реальность особенным способом — предполагая, что мы живем внутри массивной нейронной сети, которая управляет всем вокруг. Другими словами, как он написал в статье, «вполне возможно, что вся Вселенная на самом фундаментальном уровне представляет собой нейронную сеть».

В течение многих лет физики пытались совместить квантовую механику и общую теорию относительности. Первое утверждает, что время универсально и абсолютно, а второе, что время относительно, связано с тканью пространства-времени.

В своей статье Ванчурин утверждает, что искусственные нейронные сети могут «демонстрировать примерное поведение» обеих универсальных теорий. Поскольку квантовая механика «является чрезвычайно успешной парадигмой для моделирования физических явлений в широком диапазоне масштабов, — пишет он, — широко распространено мнение, что на самом фундаментальном уровне вся Вселенная управляется правилами квантовой механики, и даже гравитация должна каким-то образом выйти из этого».

«Мы не просто говорим, что искусственные нейронные сети могут быть полезны для анализа физических систем или для открытия физических законов, мы говорим, что именно так на самом деле работает мир вокруг нас», — говорится в обсуждении статьи.

Концепция настолько смелая, что большинство физиков и экспертов по машинному обучению, к которым мы обратились, отказались комментировать исследование, ссылаясь на скептицизм по поводу выводов статьи. Но в интервью с Futurism, Ванчурин склонился к полемике — и рассказал нам больше о своей идее.

Футуризм: в вашей статье утверждается, что Вселенная может быть нейронной сетью. Как бы вы объяснили свои рассуждения тому, кто не очень разбирается в нейронных сетях или физике?

Виталий Ванчурин: На ​​ваш вопрос можно ответить двумя способами.

Первый способ — начать с точной модели нейронных сетей, а затем изучить поведение сети в пределе большого количества нейронов. Я показал, что уравнения квантовой механики довольно хорошо описывают поведение системы вблизи состояния равновесия, а уравнения классической механики довольно хорошо описывают, как система удаляется от равновесия. Стечение обстоятельств? Может быть, но, насколько нам известно, квантовая и классическая механика — это именно то, как работает физический мир.

Второй способ — начать с физики. Мы знаем, что квантовая механика довольно хорошо работает в малых масштабах, а общая теория относительности довольно хорошо работает в больших масштабах, но пока нам не удалось согласовать две теории в единой системе. Это известно как проблема квантовой гравитации. Ясно, что нам не хватает чего-то большого, но, что еще хуже, мы даже не знаем, как обращаться с наблюдателями. Это известно как проблема измерения в контексте квантовой механики и проблема меры в контексте космологии.

Тогда можно возразить, что есть не два, а три явления, которые необходимо объединить: квантовая механика, общая теория относительности и наблюдатели. 99% физиков скажут вам, что квантовая механика является основной и все остальное должно каким-то образом возникать из нее, но никто точно не знает, как это можно сделать. В этой статье я рассматриваю еще одну возможность того, что микроскопическая нейронная сеть является фундаментальной структурой, а все остальное, то есть квантовая механика, общая теория относительности и макроскопические наблюдатели, вытекает из нее. Пока все выглядит многообещающе.

Читайте также:  Три варианта смерти вселенной

Что впервые навело вас на эту идею?

Сначала я просто хотел лучше понять, как работает глубокое обучение, и поэтому написал статью под названием «К теории машинного обучения». Первоначальная идея заключалась в применении методов статистической механики для изучения поведения нейронных сетей, но оказалось, что в определенных пределах динамика обучения нейронных сетей очень похожа на квантовую динамику, которую мы видим в физике. В то время я был в творческом отпуске и решил исследовать идею о том, что физический мир на самом деле является нейронной сетью.

Идея определенно безумная, но достаточно ли безумная, чтобы быть правдой? Это еще предстоит выяснить.

В статье вы написали, что для доказательства ошибочности теории «все, что нужно, — это найти физическое явление, которое не может быть описано нейронными сетями». Что ты имеешь в виду? Почему такое «легче сказать, чем сделать»?

Существует множество «теорий всего», и большинство из них, должно быть, ошибочны. По моей теории, все, что вы видите вокруг себя, является нейронной сетью, и поэтому, чтобы доказать, что это неверно, все, что нужно, — это найти явление, которое невозможно смоделировать с помощью нейронной сети. Но если подумать, это очень сложная задача, потому что мы очень мало знаем о том, как ведут себя нейронные сети и как на самом деле работает машинное обучение. Вот почему я в первую очередь попытался разработать теорию машинного обучения.

Как ваше исследование связано с квантовой механикой и обращается ли оно к эффекту наблюдателя?

Существует два основных направления мысли: интерпретация квантовой механики Эвереттом (или многомировая) и интерпретация Бома (или скрытых переменных). Мне нечего сказать нового о многомировой интерпретации, но я думаю, что могу внести свой вклад в теории скрытых переменных. В квантовой механике, которую я рассматривал, скрытые переменные — это состояния отдельных нейронов, а обучаемые переменные (такие как вектор смещения и матрица весов) — квантовые переменные. Обратите внимание, что скрытые переменные могут быть очень нелокальными, поэтому неравенства Белла нарушаются. Ожидается, что появится приближенная пространственно-временная локальность, но, строго говоря, каждый нейрон может быть связан с любым другим нейроном, и поэтому система не обязательно должна быть локальной.

Не могли бы вы подробнее рассказать о том, как эта теория связана с естественным отбором? Как естественный отбор влияет на эволюцию сложных структур / биологических клеток?

Я говорю очень просто. Есть структуры (или подсети) микроскопической нейронной сети, которые более стабильны, а есть другие структуры, которые менее стабильны. Более стабильные структуры переживут эволюцию, а менее стабильные структуры будут уничтожены. Я ожидаю, что в самых маленьких масштабах естественный отбор должен произвести некоторые структуры очень низкой сложности, такие как цепочки нейронов, но в больших масштабах структуры будут более сложными. Я не вижу причин, по которым этот процесс должен быть ограничен определенной шкалой длины, и поэтому утверждается, что все, что мы видим вокруг нас (например, частицы, атомы, клетки, наблюдатели и т. д.), Является результатом естественного отбора.

Мы были заинтригованы вашим первым письмом, где вы сказали, что сами, возможно, не все понимаете. Что вы имели в виду? Вы имели в виду сложность самой нейронной сети или что-то более философское?

Да, я говорю только о сложности нейронных сетей. У меня даже не было времени подумать о философском подтексте результатов.

Нужно спросить: означает ли эта теория, что мы живем в симуляции?

Нет, возможно мы живем в нейронной сети, но никогда не заметим разницы.

Источник

Adblock
detector