Условно в атмосфере Солнца выделяют три основных слоя: фотосферу (самый нижний слой), хромосферу и корону.
1. Фотосфера. Доступная непосредственному наблюдению светящаяся «поверхность» Солнца называется фотосферой. Никакой «поверхности» в обычном смысле этого слова Солнце, конечно, не имеет. На самом деле фотосфера представляет собой нижний слой солнечной атмосферы, толщина которого 300—400 км. Именно она излучает практически всю приходящую к нам солнечную энергию, так как из-за непрозрачности вещества фотосферы солнечное излучение из более глубоких слоев Солнца к нам уже не доходит и их увидеть невозможно. Плотность фотосферы не превышает порядка 10 -4 кг/м 3 , а число атомов преобладающего в фотосфере водорода — порядка 10 17 в объеме 1 см 3 . Температура в фотосфере растет с глубиной, в среднем она близка к 6000 К.
Рис. 69. Участок фотосферы Солнца.
Нарисунке 69 показан участок фотосферы, сфотографированный с помощью телескопа, поднятого на стратостате. На нем видно крупное солнечное пятно и множество зерен ( гранул ). Гранулы ярче и, следовательно, горячее, чем окружающие его участки фотосферы. Размеры гранул неодинаковы и составляют в среднем несколько сотен километров. Время существования отдельных гранул — около 8 мин. Непрерывно появляющиеся и исчезающие гранулы свидетельствуют о том, что вещество, из которого состоит фотосфера, находится в движении. Один из видов движений в фотосфере и подфотосферных слоях — вертикальный подъем и опускание вещества. Такое колебательное движение связано с конвекцией: начиная с некоторой глубины (примерно 0,3 радиуса Солнца) вещество на Солнце перемешивается, подобно воде в сосуде, подогреваемой снизу. Гранулы — это верхушки конвективных потоков, проникающих в фотосферу. Гранулы всегда наблюдаются на всей поверхности Солнца, которую иногда сравнивают с кипящей рисовой кашей. Другие детали фотосферы (пятна, факелы) появляются лишь время от» времени.
Еще задолго до изобретения телескопа люди замечали на неярком заходящем Солнце или на Солнце, видимом сквозь легкие облака, темные пятна. Прежде не только не знали, что представляют собой пятна, но и не допускали мысли о том, что пятна находятся на Солнце. Лишь теперь, спустя три с половиной столетия с тех пор, как Галилей доказал, что пятна — это реальные образования на поверхности Солнца, начинает выясняться их физическая природа.
Солнечные пятна значительно крупнее гранул. Диаметры наибольших пятен достигают десятков тысяч километров. Пятна — непостоянные, изменчивые детали фотосферы, существующие от нескольких дней до нескольких месяцев. Иногда на Солнце не бывает пятен совсем, а иногда одновременно наблюдаются десятки крупных пятен. Многолетние наблюдения пятнообразовательной деятельности Солнца показали, что имеются циклические колебания числа пятен. Средняя продолжительность цикла составляет примерно 11 лет (рис. 70).
Рис. 70. 11-летний цикл солнечной активности.
Рис. 71. Группа солнечных пятен.
Центральнаячасть пятна — ядро (или тень ) — окружена волокнистой полутенью (см. рис. 69). Вблизи края солнечного диска круглое пятно видно как эллиптическое, а совсем близко от края диска — как узкая полоска полутени. Это можно объяснить тем, что пятно представляет собой коническую воронку, глубина которой примерно 300—400 км. Пятна кажутся темными лишь по контрасту с фотосферой. На самом деле температура ядра (самой холодной части пятна) около 4300 К, т. е. выше температуры электрической дуги, на которую, как известно, невозможно смотреть без защитных очков. Линии в спектре пятен заметно расщеплены. Это явление объясняется тем, что вещество пятен подвержено действию сильных магнитных полей. Обычно пятна наблюдаются группами (рис. 71). Пятно в группе, которое располагается первым по направлению вращения Солнца, называется головным , последнее пятно в группе — хвостовым . Головные и хвостовые пятна имеют противоположную полярность, например головные — северный магнитный полюс, а хвостовые — южный, т. е. в целом группа пятен напоминает гигантский магнит. Магнитное поле пятен в тысячи раз превосходит общее магнитное поле Солнца. Поэтому солнечные пятна подобны «магнитным островам» в фотосфере Солнца. Замечательно, что в соседних 11-летних циклах группы пятен изменяют свою полярность. Например, если в данном 11-летнем цикле все головные пятна групп в северном полушарии Солнца имели северный магнитный полюс, то в следующем цикле северный магнитный полюс будет у хвостовых пятен.
Магнитное поле пятен — одна из наиболее важных характеристик. Именно с магнитным полем связана и причина появления солнечных пятен. Дело в том, что сильное магнитное поле способно замедлить конвекцию плазмы. В местах, где конвекция замедлена, на поверхность поступает меньше энергии, там образуются более холодные и темные участки фотосферы — солнечные пятна.
Фотосферные факелы — детали более светлые (а значит, и более горячие), чем фотосфера. Если группа пятен находится вблизи края солнечного диска, то вокруг нее обычно видно множество факелов — факельное поле. Факелы возникают незадолго до появления солнечных пятен и существуют в среднем в три раза дольше пятен. В местах, где наблюдаются факелы, на поверхность Солнца выносится более горячее вещество, чем в других участках фотосферы. Это связано с местным усилением конвекции в подфотосферных слоях.
2. Хромосфера. В моменты полных солнечных затмений хорошо видны внешние области атмосферы Солнца — хромосфера (розового цвета) и серебристо-жемчужная корона . Яркость хромосферы и короны во много раз меньше яркости фотосферы. Из-за рассеяния солнечного света в земной атмосфере эти слабосветящиеся внешние оболочки не удается видеть вне затмения без специальных приспособлений.
Хромосфера простирается до высоты 10—14 тыс. км. В ее самых нижних слоях температура около 5000 К, а затем, по мере подъема над фотосферой, она начинает постепенно расти, достигая в верхних слоях атмосферы (2•10 4 — 5•10 4 ) К.
Рис. 72. Участок хромосферы над солнечным пятном.
Внезатмения хромосферу можно наблюдать, если выделить очень узкий участок спектра и получить изображение Солнца в монохроматическом свете, длина волны которого соответствует какой-нибудь одной спектральной линии, например, водородной линии Нα. Тогда можно увидеть, что хромосфера состоит из темных и светлых узелков, образующих сетку. Размеры ячеек хромосферной сетки значительно превосходят размеры гранул фотосферы, достигая 30 — 50 тыс. км. Яркость хромосферы неодинакова. Наиболее яркие ее участки ( хромосферные факелы ) расположены над фотосферными факелами и пятнами (рис. 72).
В хромосфере наблюдаются самые мощные и быстро развивающиеся процессы, называемые вспышками . В ходе развития вспышки сначала увеличивается яркость небольшого участка хромосферы, но затем становится яркой область, охватывающая десятки миллиардов квадратных километров (рис. 73). Слабые вспышки исчезают через 5—10 мин, а самые мощные продолжаются несколько часов. Небольшие вспышки происходят на Солнце по нескольку раз в сутки, мощные наблюдаются значительно реже. Обычно вспышки появляются над пятнами, особенно над теми, которые быстро изменяются. По характеру явления (стремительность развития, огромное энерговыделение — до 10 25 — 10 26 Дж) вспышки представляют собой взрывные процессы, при которых освобождается энергия магнитного поля солнечных пятен. Вспышки сопровождаются мощным ультрафиолетовым, рентгеновским и радиоизлучением. В межпланетное пространство выбрасываются электрически заряженные частицы ( корпускулы ).
Рис. 73. Развитие солнечной вспышки.
Рис. 74. Протуберанец на Солнце.
На краю солнечного диска хорошо видны протуберанцы (рис. 74) — гигантские яркие выступы или арки, как бы опирающиеся на хромосферу и врывающиеся в солнечную корону. Спокойные протуберанцы существуют несколько недель и даже месяцев. Вещество протуберанцев поглощает и рассеивает идущее снизу излучение, а потому, проецируясь на яркий диск Солнца, протуберанцы выглядят как темные волокна. В отличие от спокойных протуберанцев, часто наблюдаются протуберанцы, для которых характерны очень быстрые движения и выбросы веществ в корону.
3. Солнечная корона. Внутренние области короны , удаленные от фотосферы на расстояние до одного радиуса Солнца, можно наблюдать не только во время солнечных затмений, но и вне затмения с помощью коронографа — специального телескопа, в фокусе объектива которого ставится зачерненный диск («искусственная Луна»). Коронографы устанавливают в горах на высоте не ниже 2000 м над уровнем моря, где солнечное излучение значительно меньше рассеивается земной атмосферой.
Рис. 75. Вид Солнца во время полного затмения.
Рис. 76. Изменение вода солнечной короны.
Форма короны не остается постоянной (рис. 76). В годы, когда на поверхности Солнца много пятен, корона почти круглая. Когда же пятен мало, корона сильно вытянута в плоскости экватора Солнца. Корона неоднородна: в ней наблюдаются лучи, дуги, отдельные сгущения вещества, полярные «щеточки» (короткие прямые лучи, наблюдаемые у полюсов) и т. д. Детали короны неразрывно связаны с пятнами и факелами, а также с явлениями, происходящими в хромосфере. Все детали короны вращаются с той же угловой скоростью, что и расположенные под ними участки фотосферы.
Как далеко простирается корона? По фотографиям, полученным во время затмений, корону удается проследить на расстоянии до нескольких солнечных радиусов от края Солнца. Отдельные выбросы солнечной плазмы, которые как бы входят в состав сверхкороны Солнца, достигают земной орбиты. Сверхкорона была открыта радиоастрономическими методами. Огромная протяженность короны объясняется большими скоростями входящих в нее частиц, а значит, и высокой температурой короны. Этот вывод подтверждает исследование спектра короны. Ряд линий в спектре короны оставался загадочным вплоть до 40-х гг. Оказалось, что эти линии принадлежат многократно ионизованным атомам хорошо известных на Земле элементов, например атомам железа, лишенным 13 электронов. Такая высокая ионизация в очень разреженном веществе короны возможна при температуре не менее 10 6 К. Следовательно, наблюдая корону, можно изучать в космической лаборатории высокотемпературную разреженную плазму в естественных условиях.
Поскольку средняя температура фотосферы около 6000 К, то она своим излучением не может нагреть солнечную корону до более высокой температуры. Согласно одной из гипотез, конвективные движения газа внутри Солнца создают сжатия и разрежения (волны), которые переносят энергию из внутренних слоев Солнца в его атмосферу. Энергия волнового движения нагревает вещество хромосферы и короны. Разреженный газ хромосферы и короны излучает мало и, получая большой приток энергии снизу, сильно нагревается.
4. Солнечная активность. Комплекс нестационарных образований в атмосфере Солнца (пятна, факелы, протуберанцы, вспышки и др.) называется солнечной активностью. Так, солнечные пятна всегда связаны с фотосферными факелами, вспышки и протуберанцы в большинстве случаев образуются над «возмущенной» фотосферой и т. д. Области на Солнце, где наблюдаются пятна, факелы, вспышки, протуберанцы и другие проявления солнечной активности, называются активными областями (или центрами активности). Как мы видели, центры активности, зарождаясь на некоторой глубине под фотосферой, простираются далеко в солнечную корону. Связующее звено между различными ярусами центров активности — магнитное поле.
Не только появление пятен, но и солнечная активность в целом имеет 11-летнюю цикличность. В годы максимума солнечной активности на Солнце много центров активности ( возмущенное Солнце). В годы минимума центров активности мало ( спокойное Солнце). Необычным был максимум предыдущего (22-го) цикла солнечной активности. Он отличался высокой активностью (в частности, большим числом пятен) и продолжительностью (растянутостью на несколько лет — примерно с 1989 по 1992 г .).
Источник
Атмосфера Солнца
Атмосферой Солнца называют три внешних слоя Солнца, расположенные выше конвективной зоны, и состоящие (по числу атомов) в основном из водорода, 10% гелия, 1/1000 углерода, азота и кислорода и 1/10 000 металлов вместе со всеми остальными химическими элементами. Атмосферу Солнца принято разделять на фотосферу, хромосферу и корону, которая переходит в солнечный ветер.
Фотосфера
Фотосфера (перевод с греческого «сфера света») — слой атмосферы звезды,кажущаяся поверхность Солнца, В фотосфере формируется доходящий до нас непрерывный спектр оптического излучения звезд. Толщина фотосферы Солнца — 300-400 км. Для Солнца температура в фотосфере уменьшается с высотой от 8000-10000 o К до минимальной на Солнце температуры около 4300 o К. . Плотность фотосферы составляет от 10 -8 до 10 -9 г/смЗ (концентрация частиц от 10 15 до 10 16 1/см3), давление около 0.1 атм. При таких условиях все атомы с небольшими потенциалами ионизации (в несколько вольт, например Na, K, Ca) оказываются ионизованными. Остальные элементы, в том числе водород, энергия ионизации которого 13.6 эВ, остаются преимущественно в нейтральном состоянии. Фотосфера — единственный на Солнце слой, где водород почти нейтрален. Поверхность Фотосферы Солнца покрыта гранулами. Размер гранул от 200 до 2000 км, продолжительность их существования от 1 до 10 мин. Гранулы являются верхушками конвективных ячеек, расположенных в конвективной зоне.
Фотография солнечного пятна. По переферии — сетка гранул
Спектральные линии в гранулах и промежутках между ними смещены соответственно в синюю и красную стороны. Это означает, что в средней части гранул подфотосферное солнечное вещество поднимается на поверхность, а на краях гранул стекает вниз. Скорость этих движений составляет 1 — 2 км/с. Поэтому температура в центре гранул выше, чем на периферии. «Глубина» гранул, по-видимому, достигает нескольких сотен, а то и тысячи километров. Грануляция фотосферы практически не зависит от гелиоцентрической широты и фазы цикла СА.
Хромосфера
Хромосфера обнаруживается при полном солнечном затмении как тонкий окрашенный (розоватый) ободок вокруг Солнца. Отсюда и ее название.
Ее толщина около 15*10 3 км. Концентрация частиц в хромосфере ниже, чем в фотосфере, и уменьшается с высотой от 10 14 до 10 10 1/см3. Температура в хромосфере растет с высотой неравномерно: в нижней части — медленно,4500-4800 о К, а в средней и верхней частях — быстро, достигая на границе с короной в переходном слое значений 10 6 о К . В хромосфере по мере продвижения вверх последовательно ионизуются водород, гелий и др. химические элементы. До высоты 1500 км лежит сравнительно плотная нижняя хромосфера, а выше простираются средний (1500-4000 км) и верхний слои, отличающиеся очень неоднородной структурой. Наиболее мелкие структурные образования в хромосфере называются спикулами. Они имеют продолговатую форму, причем вытянуты преимущественно в радиальном направлении. Длина их составляет несколько тысяч километров, а толщина — около одной тысячи километров. Со скоростями в несколько десятков километров в секунду спикулы поднимаются из хромосферы в корону и растворяются в ней. Таким образом, через спикулы происходит обмен веществом между хромосферой и вышележащей короной. Спикулы, в свою очередь, образуют более крупную структуру, называемую хромосферной сеткой. Она состоит из отдельных ячеек размером (30 -60 )*10 3 км.
Часто наблюдается фибрильная структура хромосферы, отражающая характер магнитных полей, вынесенных конвекцией из-под фотосферы в хромосферу, т.е. фибриллы — это петли магнитного поля на поверхности Солнца. Интенсивное появление фибрилл сопутствует рождению новой активной области на Солнце. В активные периоды в хромосфере Солнца наблюдают вспышки и флоккулы. (см солнечная активность)
Солнечная корона
Солнечная корона — самая внешняя и очень разреженная часть атмосферы Солнца, продолжающаяся в виде движущейся от Солнца плазмы — солнечного ветра — в межпланетное пространство. (см. Солнечный ветер) Между хромосферой и короной находится переходная область, плотность в которой меняется от 10 -12 до 10 -15 г/см3 (концентрация частиц — от 10 12 до 10 9 1/см3), а температура — от 1*10 4 до 1,5*10 6 К. Рост температуры, определяется быстрым падением плотности вещества с высотой и накачкой энергии за счет процессов поглощения акустических и магнитозвуковыx волн, распространяющихся от фотосферы Корону можно условно разделить на три зоны: внутреннюю (r 2,5 RC ). Средняя температура короны 1,5*106 К. С высотой температура короны меняется мало. Плотность короны у переходной области
10 -15 г/смЗ (концентрация частиц 10 8 см-3), а на расстоянии 3RC плотность
6*10 -19 г/смЗ, (концентрация 4.10 5 см-3). По своему составу корональный газ сходен с фотосферным. Атомы почти полностью лишены всех своих электронов, т.е. корона представляет собой практически полностью ионизированную плазму. Структура короны довольно сложна, она включает в себя крупные образования, удаляющиеся от Солнца в виде «опахал» или в виде «лучей». Плотность вещества в этих образованиях, по-видимому, почти на порядок выше, чем в окружающей короне.
С другой стороны, в полярных областях постоянно существуют так называемые корональные дыры — области с аномально низкими температурами, с исключительно низкой плотностью.
Темные области на снимке в рентгене– корональные дыры
Их общая площадь достигает 15% от всей площади поверхности Солнца, на низких широтах площади корональных дыр меньше 2-5% площади поверхности Солнца. Время жизни одной дыры может превышать 5 оборотов Солнца (до 20 оборотов). Корональные дыры связаны с униполярными областями в фотосфере. В этих областях происходит усиление истечения плазмы солнечного ветра, оказывающего существенное влияние на геофизические явления.
Яркость короны в миллион раз меньше яркости фотосферы. Наблюдать солнечную корону невооруженным глазом можно только во время полной фазы солнечных затмений. Вне затмений с поверхности Земли корону наблюдают при помощи специальных телескопов — коронографов.
Корональные транзиенты Общее название коротроживущих изменений в короне, в основоном используется для описания выходящих из С. плазменных облаков — Корональных выбросов масс (Coronal Mass Ejection). Этими мощными выбросами плазменного вещества уносится примерно половина общей энергии солнечной вспышки. CME проходит через солнечную корону и со скоростью порядка 1000 км/с достигает орбиты Земли через 1 – 2 суток. Солнечные корпускулярные потоки, взаимодействуя с земной магнитосферой, вызывают магнитные бури и магнитосферные суббури.
Магнитное поле Солнца разделяется на два типа — общее поле и локальные поля. Общее магнитное поле Солнца — это поле полоидального типа, вытянутое вдоль солнечных меридианов и подобное полю дипольного типа. Его напряженность на уровне фотосферы составляет 1-2 Гс. Общее поле Солнца периодически, приблизительно раз в 11 лет меняет свою полярность на противоположную. Полный период Т = 22 года. Общее поле состоит из множества мелких структур разной полярности и размеров, напряженностью до 10-20 Гс. Локальные магнитные поля активных образований на Солнце разделяются на биполярные (ВМ) и униполярные (UM) области. Напряженность поля |B| в ВМ-областях варьирует от 0,1 до нескольких сотен гаусс. Знак поля различен в различных частях этих областей, и, поскольку они вытянуты вдоль линии восток-запад, в них всегда можно выделить ведущую (р) и ведомую (f) полярности. Эти полярности различны в северном и южном полушариях и меняют знак с началом каждого нового 11-летнего цикла. UM-области по сравнению с ВМ-областями располагаются ближе к полюсам и имеют меньшую напряженность магнитного поля, но большую площадь и продолжительность жизни: для UM-области характерно В
5-7 оборотов Солнца. Развитие ВМ- и UM-областей предшествует появлению активных областей на Солнце и завершается после исчезновения.
Более подробную информацию по данному вопросу можно найти в разделах СиЗиФа ОБЗОРЫ и СТАТЬИ, а также на страницах учебника. Специально вопросам солнечной активности посвящен богато иллюстрированный раздел проекта Э.В. Кононовича ЖИЗНЬ ЗЕМЛИ В АТМОСФЕРЕ СОЛНЦА