Меню

Нижним слоем атмосферы солнца

Нижним слоем атмосферы солнца

§ 19. СТРОЕНИЕ АТМОСФЕРЫ СОЛНЦА

Условно в атмосфере Солнца выделяют три основных слоя: фотосферу (самый нижний слой), хромосферу и корону.

1. Фотосфера. Доступная непосредственному наблюдению светящаяся «поверхность» Солнца называется фото­сферой. Никакой «поверхности» в обычном смысле этого слова Солнце, конечно, не имеет. На самом деле фото­сфера представляет собой нижний слой солнечной атмо­сферы, толщина которого 300—400 км. Именно она излу­чает практически всю приходящую к нам солнечную энер­гию, так как из-за непрозрачности вещества фотосферы сол­нечное излучение из более глубоких слоев Солнца к нам уже не доходит и их увидеть невозможно. Плотность фото­сферы не превышает порядка 10 -4 кг/м 3 , а число атомов преобладающего в фотосфере водорода — порядка 10 17 в объ­еме 1 см 3 . Температура в фотосфере растет с глубиной, в среднем она близка к 6000 К.

Рис. 69. Участок фотосферы Солнца.

Нарисунке 69 показан участок фотосферы, сфотографи­рованный с помощью телескопа, поднятого на стратостате. На нем видно крупное солнечное пятно и множество зерен ( гранул ). Гранулы ярче и, следовательно, горячее, чем окружающие его участки фотосферы. Размеры гранул неоди­наковы и составляют в среднем несколько сотен километ­ров. Время существования отдельных гранул — около 8 мин. Непрерывно появляющиеся и исчезающие гранулы свиде­тельствуют о том, что вещество, из которого состоит фото­сфера, находится в движении. Один из видов движений в фотосфере и подфотосферных слоях — вертикальный подъем и опускание вещества. Такое колебательное движение свя­зано с конвекцией: начиная с некоторой глубины (примерно 0,3 радиуса Солнца) вещество на Солнце перемешивается, подобно воде в сосуде, подогреваемой снизу. Гранулы — это верхушки конвективных потоков, проникающих в фото­сферу. Гранулы всегда наблюдаются на всей поверхности Солнца, которую иногда сравнивают с кипящей рисовой ка­шей. Другие детали фотосферы (пятна, факелы) появляются лишь время от» времени.

Еще задолго до изобретения телескопа люди замечали на неярком заходящем Солнце или на Солнце, видимом ск­возь легкие облака, темные пятна. Прежде не только не знали, что представляют собой пятна, но и не допускали мысли о том, что пятна находятся на Солнце. Лишь теперь, спустя три с половиной столетия с тех пор, как Гали­лей доказал, что пятна — это реальные образования на по­верхности Солнца, начинает выясняться их физическая при­рода.

Солнечные пятна значительно крупнее гранул. Диаметры наибольших пятен достигают десятков тысяч километров. Пятна — непостоянные, изменчивые детали фотосферы, су­ществующие от нескольких дней до нескольких месяцев. Иногда на Солнце не бывает пятен совсем, а иногда одно­временно наблюдаются десятки крупных пятен. Многолетние наблюдения пятнообразовательной деятельности Солнца по­казали, что имеются циклические колебания числа пятен. Средняя продолжительность цикла составляет примерно 11 лет (рис. 70).

Рис. 70. 11-летний цикл солнечной активности.

Рис. 71. Группа солнечных пятен.

Центральнаячасть пятна — ядро (или тень ) — ок­ружена волокнистой полутенью (см. рис. 69). Вблизи края солнечного диска круглое пятно видно как эллиптиче­ское, а совсем близко от края диска — как узкая полоска полутени. Это можно объяснить тем, что пятно представ­ляет собой коническую воронку, глубина которой примерно 300—400 км. Пятна кажутся темными лишь по контрасту с фотосферой. На самом деле температура ядра (самой холод­ной части пятна) около 4300 К, т. е. выше температуры электрической дуги, на которую, как известно, невозможно смотреть без защитных очков. Линии в спектре пятен за­метно расщеплены. Это явление объясняется тем, что веще­ство пятен подвержено действию сильных магнитных полей. Обычно пятна наблюдаются группами (рис. 71). Пятно в группе, которое располагается первым по направлению вра­щения Солнца, называется головным , последнее пятно в группе — хвостовым . Головные и хвостовые пятна имеют противоположную полярность, например головные — северный магнитный полюс, а хвостовые — южный, т. е. в целом группа пятен напоминает гигантский магнит. Магнит­ное поле пятен в тысячи раз превосходит общее магнитное поле Солнца. Поэтому солнечные пятна подобны «магнит­ным островам» в фотосфере Солнца. Замечательно, что в со­седних 11-летних циклах группы пятен изменяют свою полярность. Например, если в данном 11-летнем цикле все го­ловные пятна групп в северном полушарии Солнца имели северный магнитный полюс, то в следующем цикле север­ный магнитный полюс будет у хвостовых пятен.

Магнитное поле пятен — одна из наиболее важных ха­рактеристик. Именно с магнитным полем связана и причина появления солнечных пятен. Дело в том, что сильное маг­нитное поле способно замедлить конвекцию плазмы. В ме­стах, где конвекция замедлена, на поверхность поступает меньше энергии, там образуются более холодные и темные участки фотосферы — солнечные пятна.

Фотосферные факелы — детали более светлые (а значит, и более горячие), чем фотосфера. Если группа пятен нахо­дится вблизи края солнечного диска, то вокруг нее обычно видно множество факелов — факельное поле. Факелы возни­кают незадолго до появления солнечных пятен и суще­ствуют в среднем в три раза дольше пятен. В местах, где наблюдаются факелы, на поверхность Солнца выносится бо­лее горячее вещество, чем в других участках фотосферы. Это связано с местным усилением конвекции в подфотосферных слоях.

2. Хромосфера. В моменты полных солнечных затмений хорошо видны внешние области атмосферы Солнца — хромосфера (розового цвета) и серебристо-жемчужная корона . Яркость хромосферы и короны во много раз меньше яркости фотосферы. Из-за рассеяния солнечного света в земной атмосфере эти слабосветящиеся внешние обо­лочки не удается видеть вне затмения без специальных при­способлений.

Хромосфера простирается до высоты 10—14 тыс. км. В ее самых нижних слоях температура около 5000 К, а затем, по мере подъема над фотосферой, она начинает постепен­но расти, достигая в верхних слоях атмосферы (2•10 4 — 5•10 4 ) К.

Рис. 72. Участок хромосферы над солнечным пятном.

Внезатмения хромосферу можно наблюдать, если выде­лить очень узкий участок спектра и получить изображение Солнца в монохроматическом свете, длина волны которого соответствует какой-нибудь одной спектральной линии, на­пример, водородной линии Нα. Тогда можно увидеть, что хромосфера состоит из темных и светлых узелков, образую­щих сетку. Размеры ячеек хромосферной сетки значительно превосходят размеры гранул фотосферы, достигая 30 — 50 тыс. км. Яркость хромосферы неодинакова. Наиболее яр­кие ее участки ( хромосферные факелы ) располо­жены над фотосферными факелами и пятнами (рис. 72).

В хромосфере наблюдаются самые мощные и быстро раз­вивающиеся процессы, называемые вспышками . В ходе развития вспышки сначала увеличивается яркость не­большого участка хромосферы, но затем становится яркой область, охватывающая десятки миллиардов квадратных ки­лометров (рис. 73). Слабые вспышки исчезают через 5—10 мин, а самые мощные продолжаются несколько часов. Не­большие вспышки происходят на Солнце по нескольку раз в сутки, мощные наблюдаются значительно реже. Обычно вспышки появляются над пятнами, особенно над теми, ко­торые быстро изменяются. По характеру явления (стремительность развития, огромное энерговыделение — до 10 25 — 10 26 Дж) вспышки представляют собой взрывные процессы, при которых освобождается энергия магнитного поля сол­нечных пятен. Вспышки сопровождаются мощным ультра­фиолетовым, рентгеновским и радиоизлучением. В межпла­нетное пространство выбрасываются электрически заряжен­ные частицы ( корпускулы ).

Рис. 73. Развитие солнечной вспышки.

Рис. 74. Протуберанец на Солнце.

На краю солнечного диска хорошо видны проту­беранцы (рис. 74) — гигантские яркие выступы или арки, как бы опирающиеся на хромосферу и врывающиеся в солнечную корону. Спокойные протуберанцы существуют несколько недель и даже месяцев. Вещество протуберанцев поглощает и рассеивает идущее снизу излучение, а потому, проецируясь на яркий диск Солнца, протуберанцы выглядят как темные волокна. В отличие от спокойных протуберан­цев, часто наблюдаются протуберанцы, для которых харак­терны очень быстрые движения и выбросы веществ в ко­рону.

3. Солнечная корона. Внутренние области короны , удаленные от фотосферы на расстояние до одного радиуса Солнца, можно наблюдать не только во время солнечных затмений, но и вне затмения с помощью коронографа — специального телескопа, в фокусе объектива ко­торого ставится зачерненный диск («искусственная Луна»). Коронографы устанавливают в горах на высоте не ниже 2000 м над уровнем моря, где солнечное излучение значи­тельно меньше рассеивается земной атмосферой.

Рис. 75. Вид Солнца во время полного затмения.

Рис. 76. Изменение вода солнечной короны.

Форма короны не остается постоянной (рис. 76). В годы, когда на поверхности Солнца много пятен, корона почти круглая. Когда же пятен мало, корона сильно вытянута в плоскости экватора Солнца. Корона неоднородна: в ней на­блюдаются лучи, дуги, отдельные сгущения вещества, полярные «щеточки» (короткие прямые лучи, наблюдаемые у полюсов) и т. д. Детали короны неразрывно связаны с пят­нами и факелами, а также с явлениями, происходящими в хромосфере. Все детали короны вращаются с той же угло­вой скоростью, что и расположенные под ними участки фо­тосферы.

Как далеко простирается корона? По фотографиям, по­лученным во время затмений, корону удается проследить на расстоянии до нескольких солнечных радиусов от края Солнца. Отдельные выбросы солнечной плазмы, которые как бы входят в состав сверхкороны Солнца, достигают земной орбиты. Сверхкорона была открыта радиоастрономи­ческими методами. Огромная протяженность короны объяс­няется большими скоростями входящих в нее частиц, а значит, и высокой температурой короны. Этот вывод подтверж­дает исследование спектра короны. Ряд линий в спектре короны оставался загадочным вплоть до 40-х гг. Оказалось, что эти линии принадлежат многократно ионизованным ато­мам хорошо известных на Земле элементов, например ато­мам железа, лишенным 13 электронов. Такая высокая иони­зация в очень разреженном веществе короны возможна при температуре не менее 10 6 К. Следовательно, наблюдая ко­рону, можно изучать в космической лаборатории высоко­температурную разреженную плазму в естественных условиях.

Поскольку средняя температура фотосферы около 6000 К, то она своим излучением не может нагреть солнеч­ную корону до более высокой температуры. Согласно одной из гипотез, конвективные движения газа внутри Солнца соз­дают сжатия и разрежения (волны), которые переносят энергию из внутренних слоев Солнца в его атмосферу. Энергия волнового движения нагревает вещество хромосферы и короны. Разреженный газ хромосферы и короны излучает мало и, получая большой приток энергии снизу, сильно нагревается.

4. Солнечная активность. Комплекс нестационарных образований в атмосфере Солнца (пятна, факелы, про­туберанцы, вспышки и др.) называется солнечной актив­ностью. Так, солнечные пятна всегда связаны с фотосферными факелами, вспышки и протуберанцы в большинстве случаев образуются над «возмущенной» фотосферой и т. д. Области на Солнце, где наблюдаются пятна, факелы, вспышки, протуберанцы и другие проявления солнечной активности, называются активными областями (или центрами активности). Как мы видели, центры активности, зарождаясь на некоторой глубине под фотосферой, простираются далеко в солнечную корону. Связующее звено между различными ярусами центров активности — магнит­ное поле.

Не только появление пятен, но и солнечная активность в целом имеет 11-летнюю цикличность. В годы максимума солнечной активности на Солнце много центров активности ( возмущенное Солнце). В годы минимума центров ак­тивности мало ( спокойное Солнце). Необычным был максимум предыдущего (22-го) цикла солнечной активности. Он отличался высокой активностью (в частности, большим числом пятен) и продолжительностью (растянутостью на несколь­ко лет — примерно с 1989 по 1992 г .).

Источник

Атмосфера Солнца

Атмосферой Солнца называют три внешних слоя Солнца, расположенные выше конвективной зоны, и состоящие (по числу атомов) в основном из водорода, 10% гелия, 1/1000 углерода, азота и кислорода и 1/10 000 металлов вместе со всеми остальными химическими элементами.
Атмосферу Солнца принято разделять на фотосферу, хромосферу и корону, которая переходит в солнечный ветер.

Фотосфера

Фотосфера (перевод с греческого «сфера света») — слой атмосферы звезды,кажущаяся поверхность Солнца, В фотосфере формируется доходящий до нас непрерывный спектр оптического излучения звезд.
Толщина фотосферы Солнца — 300-400 км. Для Солнца температура в фотосфере уменьшается с высотой от 8000-10000 o К до минимальной на Солнце температуры около 4300 o К.
. Плотность фотосферы составляет от 10 -8 до 10 -9 г/смЗ (концентрация частиц от 10 15 до 10 16 1/см3), давление около 0.1 атм.
При таких условиях все атомы с небольшими потенциалами ионизации (в несколько вольт, например Na, K, Ca) оказываются ионизованными. Остальные элементы, в том числе водород, энергия ионизации которого 13.6 эВ, остаются преимущественно в нейтральном состоянии. Фотосфера — единственный на Солнце слой, где водород почти нейтрален.
Поверхность Фотосферы Солнца покрыта гранулами. Размер гранул от 200 до 2000 км, продолжительность их существования от 1 до 10 мин. Гранулы являются верхушками конвективных ячеек, расположенных в конвективной зоне.

Фотография солнечного пятна. По переферии — сетка гранул

Спектральные линии в гранулах и промежутках между ними смещены соответственно в синюю и красную стороны. Это означает, что в средней части гранул подфотосферное солнечное вещество поднимается на поверхность, а на краях гранул стекает вниз. Скорость этих движений составляет 1 — 2 км/с. Поэтому температура в центре гранул выше, чем на периферии. «Глубина» гранул, по-видимому, достигает нескольких сотен, а то и тысячи километров. Грануляция фотосферы практически не зависит от гелиоцентрической широты и фазы цикла СА.

Хромосфера

Хромосфера обнаруживается при полном солнечном затмении как тонкий окрашенный (розоватый) ободок вокруг Солнца. Отсюда и ее название.

Ее толщина около 15*10 3 км. Концентрация частиц в хромосфере ниже, чем в фотосфере, и уменьшается с высотой от 10 14 до 10 10 1/см3. Температура в хромосфере растет с высотой неравномерно: в нижней части — медленно,4500-4800 о К, а в средней и верхней частях — быстро, достигая на границе с короной в переходном слое значений 10 6 о К . В хромосфере по мере продвижения вверх последовательно ионизуются водород, гелий и др. химические элементы. До высоты 1500 км лежит сравнительно плотная нижняя хромосфера, а выше простираются средний (1500-4000 км) и верхний слои, отличающиеся очень неоднородной структурой.
Наиболее мелкие структурные образования в хромосфере называются спикулами. Они имеют продолговатую форму, причем вытянуты преимущественно в радиальном направлении. Длина их составляет несколько тысяч километров, а толщина — около одной тысячи километров. Со скоростями в несколько десятков километров в секунду спикулы поднимаются из хромосферы в корону и растворяются в ней. Таким образом, через спикулы происходит обмен веществом между хромосферой и вышележащей короной. Спикулы, в свою очередь, образуют более крупную структуру, называемую хромосферной сеткой. Она состоит из отдельных ячеек размером (30 -60 )*10 3 км.

Часто наблюдается фибрильная структура хромосферы, отражающая характер магнитных полей, вынесенных конвекцией из-под фотосферы в хромосферу, т.е. фибриллы — это петли магнитного поля на поверхности Солнца. Интенсивное появление фибрилл сопутствует рождению новой активной области на Солнце. В активные периоды в хромосфере Солнца наблюдают вспышки и флоккулы. (см солнечная активность)

Солнечная корона

Солнечная корона — самая внешняя и очень разреженная часть атмосферы Солнца, продолжающаяся в виде движущейся от Солнца плазмы — солнечного ветра — в межпланетное пространство. (см. Солнечный ветер)
Между хромосферой и короной находится переходная область, плотность в которой меняется от 10 -12 до 10 -15 г/см3 (концентрация частиц — от 10 12 до 10 9 1/см3), а температура — от 1*10 4 до 1,5*10 6 К. Рост температуры, определяется быстрым падением плотности вещества с высотой и накачкой энергии за счет процессов поглощения акустических и магнитозвуковыx волн, распространяющихся от фотосферы
Корону можно условно разделить на три зоны: внутреннюю (r 2,5 RC ).
Средняя температура короны 1,5*106 К. С высотой температура короны меняется мало. Плотность короны у переходной области

10 -15 г/смЗ (концентрация частиц 10 8 см-3), а на расстоянии 3RC плотность

6*10 -19 г/смЗ, (концентрация 4.10 5 см-3).
По своему составу корональный газ сходен с фотосферным. Атомы почти полностью лишены всех своих электронов, т.е. корона представляет собой практически полностью ионизированную плазму.
Структура короны довольно сложна, она включает в себя крупные образования, удаляющиеся от Солнца в виде «опахал» или в виде «лучей». Плотность вещества в этих образованиях, по-видимому, почти на порядок выше, чем в окружающей короне.

С другой стороны, в полярных областях постоянно существуют так называемые корональные дыры — области с аномально низкими температурами, с исключительно низкой плотностью.

Темные области на снимке в рентгене– корональные дыры

Их общая площадь достигает 15% от всей площади поверхности Солнца, на низких широтах площади корональных дыр меньше 2-5% площади поверхности Солнца. Время жизни одной дыры может превышать 5 оборотов Солнца (до 20 оборотов).
Корональные дыры связаны с униполярными областями в фотосфере.
В этих областях происходит усиление истечения плазмы солнечного ветра, оказывающего существенное влияние на геофизические явления.

Яркость короны в миллион раз меньше яркости фотосферы. Наблюдать солнечную корону невооруженным глазом можно только во время полной фазы солнечных затмений. Вне затмений с поверхности Земли корону наблюдают при помощи специальных телескопов — коронографов.

Корональные транзиенты Общее название коротроживущих изменений в короне, в основоном используется для описания выходящих из С. плазменных облаков — Корональных выбросов масс (Coronal Mass Ejection).
Этими мощными выбросами плазменного вещества уносится примерно половина общей энергии солнечной вспышки. CME проходит через солнечную корону и со скоростью порядка 1000 км/с достигает орбиты Земли через 1 – 2 суток. Солнечные корпускулярные потоки, взаимодействуя с земной магнитосферой, вызывают магнитные бури и магнитосферные суббури.

Магнитное поле Солнца разделяется на два типа — общее поле и локальные поля.
Общее магнитное поле Солнца — это поле полоидального типа, вытянутое вдоль солнечных меридианов и подобное полю дипольного типа. Его напряженность на уровне фотосферы составляет 1-2 Гс. Общее поле Солнца периодически, приблизительно раз в 11 лет меняет свою полярность на противоположную. Полный период Т = 22 года.
Общее поле состоит из множества мелких структур разной полярности и размеров, напряженностью до 10-20 Гс.
Локальные магнитные поля активных образований на Солнце разделяются на биполярные (ВМ) и униполярные (UM) области. Напряженность поля |B| в ВМ-областях варьирует от 0,1 до нескольких сотен гаусс. Знак поля различен в различных частях этих областей, и, поскольку они вытянуты вдоль линии восток-запад, в них всегда можно выделить ведущую (р) и ведомую (f) полярности. Эти полярности различны в северном и южном полушариях и меняют знак с началом каждого нового 11-летнего цикла.
UM-области по сравнению с ВМ-областями располагаются ближе к полюсам и имеют меньшую напряженность магнитного поля, но большую площадь и продолжительность жизни: для UM-области характерно В

5-7 оборотов Солнца. Развитие ВМ- и UM-областей предшествует появлению активных областей на Солнце и завершается после исчезновения.

Более подробную информацию по данному вопросу можно найти в разделах СиЗиФа
ОБЗОРЫ и СТАТЬИ, а также на страницах учебника.
Специально вопросам солнечной активности посвящен богато иллюстрированный раздел проекта Э.В. Кононовича ЖИЗНЬ ЗЕМЛИ В АТМОСФЕРЕ СОЛНЦА

Также смотри родственные разделы справочника:

Источник

Читайте также:  Видимый годовой путь солнца среди звезд называется выберите один вариант ответа

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector