Общий вид на Вселенную: за что дали Нобелевскую премию по физике
Премия по физике была в этом году разделена на две равные части, доставшиеся ученым, которых объединяют достижения в области исследований Вселенной. Согласно формулировке Нобелевского комитета, премия присуждена «за вклад в наше понимание эволюции Вселенной и места Земли в космосе».
Первую половину премии получил Джеймс Пиблз — физик-теоретик и космолог, предложивший в конце прошлого века теоретическую основу наших современных представлений о бесконечной и расширяющейся Вселенной. Вторую половину разделили между собой два швейцарских астронома, Мишель Майор и Дидье Кело, углубивших человеческие представления о космосе: именно они в середине 1990-х установили, что наша Солнечная система — не исключение, а, как окончательно установлено к настоящему времени, очень типичный космический объект.
Плоский и вечный мир
Космология, сложившаяся к середине ХХ века, рассматривает Вселенную как объект, описываемый эйнштейновской Общей теорией относительности. У этого объекта есть два принципиальных параметра: скорость расширения и геометрические свойства пространства. Скорость расширения Вселенной зависит от плотности материи в ней: если материи слишком мало, Вселенная будет расширяться бесконечно, однако если плотность велика, то расширение неизбежно сменится сжатием.
От плотности материи зависит и геометрия пространства. При некоторой определенной («критической») плотности это пространство будет «эвклидовым», то есть будет иметь ту геометрию, к которой мы привыкли. В нем параллельные прямые никогда не пересекаются, а сумма углов треугольника — как бы далеко в космосе не располагались его вершины — всегда будет равна 180 о . При более высокой плотности пространство будет иметь «положительную кривизну»: в таком пространстве параллельные прямые сближаются, как земные меридианы, а сумма углов треугольника больше 180 о , как если бы он был нарисован на сфере (например, на поверхности Земли). Если плотность меньше критической, кривизна будет отрицательной, и параллельные будут расходиться.
Ко 1980 годам наблюдательные данные астрономии свидетельствовали, что наше пространство с большой точностью являются эвклидовым (его кривизна равна нулю). При этом видимая материя — то есть все галактики и межгалактический газ — никак не могла составлять больше 5% от критической плотности. Это был серьезный вызов для космологии: во Вселенной недоставало 95% плотности, необходимой для того, чтобы пространство было таким, какое наблюдается в реальности. Парадокс пытались разрешить, предположив существование «темной материи», состоящей из нейтрино, однако эта гипотеза имела множество проблем и не выдерживала проверки наблюдательными данными.
В 1982 году Джеймс Пиблз предположил существование иного типа темной материи, состоящей из холодных и тяжелых частиц. Такая материя могла объяснить видимое движение звезд в галактиках. Однако количество обычной и темной материи в сумме все равно составляло бы лишь 31% от критической плотности, необходимой для поддержания «плоской Вселенной» (то есть пространства с нулевой кривизной).
К 1984 году группа теоретиков, включая Пиблза, решила вернуться к идее, которую когда-то предлагал Эйнштейн: ввести в уравнения Общей теории относительности дополнительный параметр. Этот параметр описывает свойство пустого пространства — давление, как бы расталкивающее его изнутри. Параметр получил название «темной энергии». Темная энергия — это свойство вакуума, побуждающее его к расширению. А поскольку в теории Эйнштейна энергия всегда эквивалентна массе, темная энергия прибавляет к плотности те самые недостающие 69%, так что суммарная плотность «всего на свете» становится в точности равна критической. Таким образом, три компонента — обычная видимая материя, «темная материя» и «темная энергия» — вместе создают такую плотность, чтобы пространство, в котором мы живем, оставалось «плоским» и эвклидовым, подчиняющимся законам школьной геометрии.
«Темная энергия» гарантирует, что расширение Вселенной будет продолжаться вечно и «Большой Взрыв» не сменится в конце времен «Большим схлопыванием». Эта теоретическая идея была подтверждена в 1998 году, когда ученые обнаружили, что скорость расширения Вселенной возрастает со временем. За это открытие в 2011 году Сол Перлмуттер, Брайан Шмидт и Адам Рис были удостоены Нобелевской премии, а восемь лет спустя высокая награда нашла и автора концепции — Джеймса Пиблза.
Множественность миров
Трудно поверить, но еще 40 лет назад существовала гипотеза, что планетная система вокруг нашего Солнца — уникальное для космоса явление, и вокруг других звезд никаких планет быть не может. Из этого следовала бы и уникальность жизни на Земле, и исключительное положение человеческой цивилизации во Вселенной (вопрос об инопланетянах был бы закрыт навсегда).
В конце 1980-х начали появляться первые данные о том, что у других звезд все же могут быть планеты. В 1988-м канадские астрономы получили данные о существовании планеты возле оранжевого гиганта в созвездии Цефея, а в 1991 году польский астроном Александр Вольшчан обнаружил планету у нейтронной звезды в созвездии Девы. Однако только в 1995 году двое швейцарских астрономов — Дидье Кело и Мишель Майор — доложили на конференции о своем открытии планеты возле звезды солнечного типа.
С помощью спектрометра, то есть по сдвигам в частоте света, астрономы обнаружили небольшие колебания звезды 51 в созвездии Пегаса, находящейся в 50 световых годах от Солнца. Колебания были вызваны гравитационным взаимодействием с обращающейся вокруг звезды планетой размером примерно с Юпитер, раскаленной примерно до 1000℃. Несмотря на то, что сама планета совершенно не похожа на нашу, это открытие было окончательным подтверждением, что Солнечная система не уникальна и вокруг подобных Солнцу звезд где-то в космосе обращаются планеты.
Как правило, экзопланеты не имеют собственных имен, однако для планеты 51 Пегаса b, ввиду важности ее в истории астрономии, было сделано исключение: на следующий год после открытия астроном Джеффри Марси предложил назвать ее Беллерофон в честь греческого героя, укротившего Пегаса. В 2015 году Международный астрономический союз официально присвоил планете другое имя — Димидий.
К настоящему времени открыты сотни экзопланет. В 2011 году телескоп «Кеплер» обнаружил у звезды Кеплер-20 две планеты, близкие по размерам к Земле. В 2017 году возле звезды TRAPPIST-1 обнаружено целых семь землеподобных планет.
Открытию новых экзопланет посвящено несколько масштабных проектов. В ходе работы космического телескопа Kepler открыто 132 экзопланеты и более 2000 потенциальных кандидатов. Затраты на проект составили более $0,5 млрд. В 2013 году запущена на орбиту космическая обсерватория Gaia, которая может открыть, согласно некоторым оценкам, до 10 000 экзопланет. Стоимость проекта составляет около €577 млн. В 2018 году запущен космический телескоп TESS, предназначенный для открытия экзопланет транзитным методом. На этот проект NASA выделено около $200 млн.
Источник
Нобелевскую премию по физике присудили за разгадку «самых темных тайн Вселенной»
Нобелевская премия по физике 2020 года присуждена англичанину Роджеру Пенроузу, немцу Рейнхарду Гензелю, также работающему в США, и американке Андреа Гез, объявил Нобелевский комитет. Награду они получили за достижения в прояснении «самых темных тайн Вселенной».
Физик и математик Пенроуз получил награду за «открытие того, что образование черной дыры является надежным предсказанием общей теории относительности». Директор германского Института внеземной физики имени Макса Планка Гензель и астроном Калифорнийского университета Гез — за «открытие сверхмассивного компактного объекта в центре нашей галактики».
Около ста лет черные дыры были теоретическим объектом. Но четыре года назад человечество впервые смогло «услышать» черные дыры: проект LIGO зарегистрировал гравитационные волны, испущенные при слиянии двух черных дыр. А в 2019 году было представлено первое изображение сверхмассивной черной дыры, расположенной в центре галактики М87.
Первая Нобелевская премия по физике была присуждена в 1901 году. Тогда ее лауреатом стал Вильям Рентген из Германии за открытие излучения, названного его именем. В 2019 году премия была присуждена «за вклад в понимание к эволюции Вселенной и места нашей планеты в космосе». Ее получили канадец Джеймс Пиблс (за теоретические открытия в области физической космологии) и швейцарцы Дидье Кело и Мишель Мэйор (за открытие экзопланеты на орбите вокруг солнцеподобной звезды).
Лауреатами Нобелевской премии по физике в разные годы были Джозеф Томсон (Великобритания), Альберт Эйнштейн (Германия), Нильс Бор (Дания), Мария и Пьер Кюри (Франция). 12 раз Нобелевскую премию в этой номинации получали советские и российские физики (в том числе родившиеся и получившие образование в СССР, а потом сменившие гражданство). Павел Черенков, Илья Франк и Игорь Тамм в 1958 году — за открытие излучения заряженных частиц, движущихся со сверхсветовой скоростью. Лев Ландау в 1962 году — за теории конденсированных сред и жидкого гелия. Николай Басов и Александр Прохоров в 1964 году — за создание квантового усилителя. Петр Капица в 1978 году — за открытия в физике низких температур. Жорес Алферов в 2000 году — за разработки в полупроводниковой технике. Виталий Гинзбург и Алексей Абрикосов в 2003 году — за работы по теории сверхпроводников и сверхтекучих жидкостей. И Андре Гейм и Константин Новоселов в 2010 году — за получение графена.
Премия по физике — вторая, лауреаты которой стали известны на этой неделе. Накануне премии в области медицины и физиологии «за открытие вируса гепатита С» были удостоены американцы Харви Альтер и Чарльз Райс и уроженец Великобритании, работающий в Канаде, Майкл Хоутон. До конца недели также будут присуждены Нобелевские премии по химии, литературе и экономике. Кроме того, 10 октября Нобелевский комитет в Осло присудит Нобелевскую премию мира.
Размер Нобелевской премии в 2020 году составляет 10 млн шведских крон (около $1,1 млн). Годом ранее она равнялась 9 млн шведских крон (около $950 000).
В этом году торжественная церемония награждения лауреатов Нобелевской премии в декабре в Стокгольме не состоится из-за коронавируса. Традиционное вручение медали и диплома лауреата королем Швеции в этом году будет заменено телевизионной трансляцией из городской ратуши с онлайн-подключением лауреатов. Организаторы Нобелевской премии мира, которая вручается в Норвегии, 10 декабря все же проведут церемонию награждения лауреатов, но в усеченном виде.
Источник
Нобелевскую премию по физике присудили за открытие экзопланеты и космологию
Нобелевскую премию по физике 2019 года присудили Джеймсу Пиблсу (James Peebles), за «теоретические открытия в области космологии», Мишелю Майору (Michel Mayor) и Дидье Кело (Didier Queloz) за «открытие экзопланеты на орбите вокруг солнцеподобной звезды». По словам Нобелевского комитета, оба этих открытия позволили по-новому взглянуть на место человека во Вселенной. Прямая трансляция объявления победителя ведется на сайте Нобелевского комитета. Подробнее о заслугах ученых можно узнать из пресс-релиза Нобелевского комитета.
Лауреаты Нобелевской премии по физике за 2019 год: Джеймс Пиблс, Мишель Майор и Дидье Кело
Ill. Niklas Elmedhed // Nobel Media
В основном предсказания Джеймса Пиблза были посвящены спектру реликтового излучения — одного из немногих объектов, которые напрямую связаны с ранней эпохой жизни Вселенной. Вообще говоря, реликтовое излучение было теоретически предсказано в 1948 году, а в 1965 году его случайно зарегистрировали Арно Пензиас и Роберт Вильсон, которые впоследствии получили за это открытие Нобелевскую премию по физике. Однако предсказания Пиблса связаны не с фактом существования реликтового излучения, а с его свойствами. Во-первых, нобелевский лауреат показал, что реликтовое излучение играет важную роль в формировании галактик. Во-вторых, Пиблс рассчитал спектр флуктуаций реликтового излучения — в частности, оценил, как излучение будет выглядеть, если добавить к обычной материи холодную темную материю, и показал, что в такой модели относительная амплитуда колебаний температуры излучения находится на уровне 5×10 −6 . В-третьих, физик добавил в модель темную энергию с отрицательной плотностью и снова пересчитал спектр излучения. Кроме того, Пиблс изучил, как введенные им гипотетические сущности сказываются на эволюции Вселенной в целом и формировании галактик в частности.
Схематическое изображение эволюции Вселенной, включая момент, начиная с которого до нас доходит реликтовое излучение
Вторую половину премию получили Мишель Майор и Дидье Кело, открывшие первую экзопланету на орбите солнцеподобной звезды — горячий Юпитер, вращающийся вокруг желтого карлика Гельветиоса в созвездии Пегаса. Для этого ученым пришлось разработать сверхточный спектрометр, который чувствовал слабые смещения спектра звезды, сопровождающие вращение планеты. После этого открытия астрономы, поверившие в возможности измерительных приборов, открыли более 4000 «новых миров», разбросанных по Млечному пути (интересное совпадение: количество открытых экзопланет примерно равно числу цитирований статьи Майора и Кело). Некоторые из этих миров даже какое-то время считались потенциально обитаемыми.
Метод, с помощью которого астрономы нашли экзопланету, был основан на эффекте Доплера. Чтобы понять, как работает этот метод, рассмотрим упрощенный пример звездной системы с одной массивной планетой. В такой системе и звезда, и планета будут обращаться вокруг общего центра масс. Если представить, что орбита планеты лежит в плоскости наблюдений, звезда в разные моменты времени будет двигаться с ненулевой скоростью по направлению к Земле и от Земли. Следовательно, из-за эффекта Доплера спектр ее излучения будет «краснеть» или «синеть». Чем тяжелее планета и чем ближе к звезде она расположена, тем быстрее она будет двигаться и тем заметнее будут сдвиги спектра. В частности, Майор и Кело зарегистрировали сдвиги примерно на 59 метров в секунду при погрешности спектрометра около 13 метров в секунду.
Принцип, благодаря которому была открыта первая экзопланета на орбите звезды солнечного типа
Незадолго до вручения Нобелевской премии агентство Clarivate Analytics пытается предсказать возможных кандидатов, ранжируя ученых по числу цитирований. В этом году агентство предложило трех кандидатов-физиков. Первый кандидат — Артур Эккерт, работавший в области квантовой криптографии и предложивший применять квантовую запутанность в шифровании. Второй кандидат — Тони Хайнц из Стэнфорда, внесший вклад в исследования наноразмерных материалов. Третий кандидат — Джон Пердью из Темпльского университета, разработавший широко известную теорию функционала плотности. Впрочем, обычно прогноз опережает решение нобелевского комитета на несколько лет. В частности, в 2013 году Clarivate Analytics выдвигала Майора и Кело в качестве возможных кандидатов.
В прошлом году Нобелевскую премию по физике присудили Артуру Эшкину (½ премии), Жерару Муру (¼ премии) и Донне Стрикленд (¼ премии) за «новаторские изобретения в области лазерной физики». Если точнее, Эшкина наградили за создание оптического пинцета, а Муру и Стрикленд — за разработку метода генерации ультракоротких высокоинтенсивных лазерных импульсов. В настоящее время оба метода широко применяются не только в физике, но и в сопредельных науках — например, в биологии и медицине. Подробнее про работу нобелевских лауреатов можно прочитать в тексте «Скальпель и пинцет».
В 2017 году Нобелевскую премию по физике разделили Райнер Вайсс (½ премии), Барри Бэриш (¼ премии) и Кип Торн (¼ премии), награжденные «за решающий вклад в детектор LIGO и за наблюдение гравитационных волн». Благодаря работе ученых астрономы получили еще один канал наблюдений за Вселенной, с помощью которого можно проверить несколько недоступных ранее гипотез. Например, уточнить уравнение состояния нейтронных звезд и измерить скорость расширения Вселенной еще одним независимым способом. Более подробно про историю и работу детектора LIGO, а также про будущее гравитационной астрономии можно прочитать в материалах «Тоньше протона», «За волной волна» и «Ботаники в неведомой стране».
Чтобы компенсировать «потери» от вручения Нобелевских премий, организации церемонии награждения и содержания административного аппарата, фонд Нобеля вкладывает свои средства в ценные бумаги. В разные года соотношение доходов и расходов фонда получается разным, поэтому и размер премии строго не фиксирован. Например, в 2001 году лауреаты получили около 12 миллионов шведских крон, в 2007 году — около 10 миллионов, в 2012 — 8 миллионов. В этом году, как и в прошлом, премия составляет 9 миллионов крон (около 900 тысяч долларов или около 60 миллионов рублей по текущему курсу).
Кроме того, нужно учитывать, что лауреатам придется разделить 9 миллионов крон между собой, так что размер выплаты каждому награжденному физику сильно меньше заветного миллиона долларов. Таким образом, Нобелевская премия — это далеко не самая прибыльная, хотя и самая престижная премия по физике. Своеобразной альтернативой этой премии в последние годы стал Breakthrough Prize, который составляет три миллиона долларов для каждого лауреата.
Источник