Вселенная расширяется быстрее, чем мы думали
В декабре человечество, наконец, получило то, чего ученые-астрономы ждали почти вечность: точное расстояние от Земли до звезд. Однако, как часто бывает в науке, новые данные породили предположение о наличии ранее неизвестной загадки, решение которой может стать «открытием века».
Из новых данных может следовать «новая физика»
«Не могу описать, насколько я взволнован», — сказал в интервью научно-просветительскому Quanta Magazine Адам Рисс. Профессор из университета Джонса Хопкинса, получивший Нобелевскую премию по физике 2011 года за совместное открытие темной энергии, занимается сейчас изучением новых данных, взволновавших научное сообщество.
Эти данные были получены 3 декабря с корабля Gaia Европейского космического агентства, который последние шесть лет наблюдал за звездами с высоты более миллиона километров от Земли. Телескоп измерил «параллаксы» 1,3 миллиарда звезд – крошечные сдвиги в видимом положении небесных тел, которые показывают их расстояния от нас.
Самая большая радость для космологов в том, что новый каталог Gaia включает в себя звезды, расстояния до которых служат мерилом для измерения всех наиболее далеких космических расстояний. Но неожиданно новые данные обострили самую большую загадку современной космологии: быстрое расширение Вселенной, известное как «хаббловская напряженность».
Все забеспокоились. Дело в том, что все основные уравнения говорят о том, что в настоящее время она должна расширяться со скоростью 67 километров в секунду на мегапарсек (то есть такова скорость разлета двух галактик, если между ними расстояние в 1 Мпк). И все же фактические измерения постоянно превышают отметку. Галактики слишком быстро удаляются. Это несоответствие наводит на мысль, что в космосе может действовать какая-то неизвестная оживляющая сила.
«Было бы невероятно интересно, если бы появилась новая физика», — сказал Рисс. «Я надеюсь, что из этого получится грандиозное открытие, но вначале нужно убедиться, что наши измерения полностью верны. Прежде, чем мы сможем сказать об этом однозначно, нам предстоит еще немало работы. Сейчас уже меньше неопределенности, так как новые данные о параллаксе, похоже, почти точно определяют расстояния до звезд».
Число из этой главы знает пока очень мало людей на Земле
В статье, опубликованной 15 декабря в The Astrophysical Journal, команда Рисса использовала новые данные. У них получилось зафиксировать скорость расширения на уровне 73,2 километра в секунду на мегапарсек с погрешностью всего 1,8%. Это, по-видимому, устранило большинство несоответствий в ранее полученных данных.
Если бы параллаксы было легко измерить, Копернику было бы гораздо легче отстоять свою правоту. Николай Коперник предположил в 16 веке, что Земля вращается вокруг Солнца. Но, по мнению ученых того времени, если бы Земля двигалась, то близлежащие звезды визуально смещались бы так же, как фонарный столб «двигается» по отношению к заднему плану, когда мы мимо него проезжаем.
Астроном Тихо Браге не обнаружил такого звездного параллакса и, таким образом, пришел к выводу, что Земля не движется.
И все же, это не так, и звезды действительно сдвигаются, просто мы не замечаем этого, так как они очень далеко. Только в 1838 году немецкий астроном Фридрих Бессель обнаружил параллакс звезд. Измеряя угловой сдвиг звездной системы 61 Лебедя относительно окружающих звезд, Бессель пришел к выводу, что она находится на расстоянии 10,3 световых лет от нас. Его измерения отличались от истинного значения всего на 10% – новые измерения Gaia помещают две звезды в системе на расстоянии 11,4030 и 11,4026 световых лет, плюс-минус одна или две тысячных светового года.
Но система 61 Лебедя исключительно близка, а вот звезды Млечного Пути смещаются всего на десятитысячные доли угловой секунды – сотые доли пикселя в современной камере телескопа. Для обнаружения движения требуются специализированные сверхстабильные инструменты. Gaia был разработан для этой цели, но когда он включился, у телескопа возникла непредвиденная проблема.
Телескоп работает, глядя одновременно в двух направлениях и отслеживая угловые различия между звездами в двух своих полях зрения, объяснил Леннарт Линдегрен, который стал соавтором миссии Gaia в 1993 году и руководил анализом новых данных о параллаксе. Для точной оценки параллакса необходимо, чтобы угол между двумя полями обзора оставался фиксированным. Но в начале миссии Gaia ученые обнаружили, что это не так. Телескоп слегка изгибается при вращении по отношению к Солнцу, что приводит к колебаниям в измерениях, имитирующих параллакс. Хуже того, это «смещение» параллакса сложным образом зависит от положения, цвета и яркости объектов.
Однако по мере накопления данных ученым Gaia было легче отделить «поддельный» параллакс от реального. Линдегрену и его коллегам удалось устранить большую часть колебаний телескопа из недавно обнародованных данных о параллаксе, а также разработать формулу, которую исследователи могут использовать для корректировки окончательных измерений в зависимости от положения, цвета и яркости звезды.
Располагая новыми данными, Рисс и его команда смогли пересчитать скорость расширения Вселенной. В общих чертах, для измерения космического расширения нужно выяснить, насколько далеки от нас галактики и как быстро они удаляются от нас. Измерения скорости просты, а вот с расстояниями все сложнее.
«Неизвестный компонент»
Людмила Трубилко, преподаватель физики высшей категории, пояснила это вопрос: «Самые точные измерения полагаются на замысловатую шкалу расстояний в астрономии. Первая ступень состоит из стандартных свечей в нашей галактике и вокруг нее, которые имеют четко определенную светимость и достаточно близки, чтобы демонстрировать параллакс — единственный надежный способ определить, насколько далеко объекты, не путешествуя туда. Затем астрономы сравнивают яркость этих стандартных свечей с яркостью более тусклых свечей в соседних галактиках, чтобы определить расстояние до них. Это вторая ступенька лестницы. Измерение расстояния до галактики, которая содержит яркие звездные взрывы, называемые сверхновыми типа 1a, позволяет космологам оценить относительные расстояния до более далеких галактик, содержащих более слабые сверхновые типа 1a. Отношение скоростей этих далеких галактик к их расстояниям дает скорость космического расширения».
Таким образом, параллаксы имеют решающее значение для всей конструкции. «Вы меняете первую ступеньку», — говорит Трубилко. — «Затем все, что следует за ней, тоже меняется. Если вы измените точность первого шага, изменится точность всего остального».
Физик с надеждой смотрит на открытия своих коллег и видит большой потенциал данных Gaia: «Параллаксы Gaia, безусловно, являются наиболее инновационным и точным определением расстояния из когда-либо существовавших. Новые данные дают астрономам новую надежду. Они, похоже, действительно корректны при внимательных подсчетах и полностью меняют то, как мы смотрим на напряжение Хаббла. Если во вселенной есть какой-то неизвестный нам компонент, который получится обнаружить, то это будет открытием века».
Источник
Самые интересные космические открытия в 2020 году
В прошедшем году ученые не только делали новые открытия — в списке космических загадок тоже случилось пополнение: это странные радиокруги, исчезающие планеты, следы самого мощного межгалактического взрыва и даже непонятно как выжившая сверхновая.
Самая «экстремальная» экзопланета
В рядах экзопланет появилась новая — K2-141b. Это каменистая и раскаленная экзопланета. Да, как и на Земле, на ней есть океаны, которые испаряются, превращаясь в облака, а затем конденсируются и выпадают обратно на поверхность в виде дождя. Только в случае с K2-141b речь идет не о воде, а о камнях.
В 2020 году астрономы смоделировали атмосферу и погоду K2-141b и получили весьма впечатляющую картину. Дневная сторона планеты нагревается до 3000 °C, превращая поверхность в огромный океан лавы глубиной 100 км. Камень фактически испаряется при такой температуре, создавая атмосферу, в основном состоящую из диоксида кремния. Сверхзвуковой ветер переносит двуокись кремния на ночную сторону планеты, где она охлаждается при температуре ниже –200 °C и выпадает в виде каменного дождя.
Планета, которой никогда не существовало?
Экзопланета Дагон (ранее Фомальгаут b) была обнаружена возле звезды Фомальгаут — одной из самых ярких звезд на ночном небе, расположенной всего в 25 световых годах от Земли. Экзопланету ученые обнаружили в 2008 году, и она была первой экзопланетой, обнаруженной напрямую, а не косвенными методами наподобие наблюдения за эффектами, которые проявляются у родительской звезды.
Но в 2020 году астрономы попросту не нашли Фомальгаут b на небе. После анализа десятилетних наблюдений Хаббла оказалось — то, что было ярким пятном света в 2004 году, полностью исчезло уже к 2014 году. И обычно экзопланеты так себя не ведут.
Поэтому новое исследование предложило логичное объяснение – Фомальгаут b никогда не существовала, во всяком случае, в виде планеты. Компьютерное моделирование показало, что это, скорее всего, было плотное пылевое облако, созданное в результате столкновения двух астероидов или комет, которые затем дрейфовали рядом друг с другом почти 10 лет.
Бетельгейзе не планирует взрываться
Еще в 2019 году Бетельгейзе начала тускнеть, чем озадачила астрономов. Второй эпизод потемнения звезды опять заставил ученых думать о взрыве, но все оказалось гораздо прозаичнее.
Новое исследование выяснило, что такие эпизоды вызывают пульсации, а вовсе не готовность красного сверхгиганта к взрыву. Более того, оказалось, взрыва можно ждать еще примерно 100 тысяч лет, а сама звезда по размерам меньше, чем предполагалось, и находится ближе к Земле — на расстоянии в 530 световых лет. Правда, опасаться все равно не стоит — взрыв никак не отразится на нашей планете.
Еще одна звезда со странной судьбой: в начале 2020 года астрономы обнаружили, что белый карлик под названием SDSS J1240 + 6710 стал сверхновой – и пережил взрыв, не разлетевшись по галактике. Хотя сверхновая обычно — финальный этап жизни звезд.
Вероятно, дело в необычном составе звезды — в нем не было водорода или гелия, но зато присутствовали углерод, натрий и алюминий, которых обычно нет в белых карликах. Размер небесного тела — всего около 40% от массы Солнца. И сейчас оно проносится через галактику со скоростью 900 000 км/ч.
Единственное объяснение, которое придумали ученые: звезда каким-то образом пережила частичную сверхновую, о чем говорит ее состав. Но пока окончательного вердикта астрономы так и не вынесли.
Звезда превращается в планету из-за черной дыры
Но, пожалуй, самая необычная судьба ждет звезду в галактике GSN 069. Примерно через триллион лет она может превратиться в планету, похожую на Юпитер, благодаря бесконечному сближению с черной дырой.
Это выяснилось, когда астрономы заметили яркие рентгеновские всплески через каждые 9 часов — оказалось, что это звезда, вращающаяся по уникальной спирографической орбите вокруг черной дыры. Вспышки были вызваны веществом, которое выплескивалось с поверхности звезды каждый раз, когда она проносилась мимо черной дыры.
За несколько миллионов лет звезда превратилась из красного гиганта в белого карлика. Если дать ей еще триллион лет, она остынет настолько, что превратится в планету.
Следы самого мощного взрыва во Вселенной
Как и галактические вулканы, черные дыры иногда вспыхивают и испускают мощные вспышки энергии, пробивая дыры в окружающем их газе. А в прошедшем году телескопы обнаружили один из самых больших «кратеров», когда-либо существовавших во Вселенной.
Похоже, что сверхмассивная черная дыра в центре скопления галактик Змееносца в какой-то момент в далеком прошлом очень мощно «выстрелила» извержением — в обнаруженный кратер можно подряд поместить пятнадцать галактик Млечного Пути. Количество энергии, которое потребовалось, чтобы оставить такой межгалактический след, сложно даже представить — это было самое мощное извержение черной дыры во Вселенной.
Пульсар с самым сильным магнитным полем
В этом году внимание астрономов привлек еще один тип нейтронной звезды — она обладает самым сильным магнитным полем, которое когда-либо наблюдали во Вселенной.
Ученые подсчитали, что магнитное поле этого пульсара достигает 1 млрд Тесла (Тл). Например, магнитное поле Солнца составляет около 0,4 Тл, среднего белого карлика — 100 Тл, а у Земли — и вовсе 30 мкТл.
Новая космическая загадка — странные радиокруги
Ученые не стали изобретать сложных названий для новой космической загадки — это странные радиокруги (odd radio circles, или ORC). Они представляют собой необъяснимые сгустки радиоизлучения, которые не соответствуют ни одному известному науке объекту или явлению.
Несколько ORC были обнаружены на радиоизображениях в виде четких кругов, и они не испускают никаких оптических, инфракрасных или рентгеновских сигналов. Астрономы еще не могут сказать, насколько они далеко находятся от Земли и каковы их реальные размеры.
Астрономы уже исключили вероятность, что это артефакты, остатки сверхновой и пылевые облака. Сейчас ORC кажутся новым астрономическим объектом, и теперь астрономы разгадывают эту загадку.
Скоростные магистрали в Солнечной системе
Ученые выяснили, что в Солнечной системе проходит самая настоящая скоростная «автострада» — извилистые туннели и каналы вокруг планет. По ним небесные тела наподобие комет и астероидов могут перемещаться по галактике гораздо быстрее обычного.
Например, от Юпитера до Нептуна небесное тело может долететь меньше, чем за 10 лет, хотя без магистрали это занимает больше 100 тысяч лет. На практике это открытие означает, что, спроектировав космические корабли с учетом скоростных каналов, можно сэкономить на ракетном топливе и путешествовать не только на ближайшие к Земле планеты, но и в отдаленные уголки Солнечной системы.
Источник
10 самых последних космических открытий
Чем совершеннее становятся технологии, тем больше возможностей открывается перед учеными и тем больше мы можем узнать о нашей Вселенной. С каждым годом космос открывает перед нами все больше своих тайн, в ближайшее время мы наверняка узнаем то, о чем раньше не могли даже догадываться. Узнайте о том, какие открытия в области космоса были сделаны в последние годы.
1) Еще один спутник Плутона
На сегодняшний день известно уже 4 спутника Плутона. Харон был открыт в 1978 году, и он является самым крупным его спутником. Диаметр этого спутника 1205 километров, что заставляет многих ученых полагать, что Плутон на самом деле является «двойной карликовой планетой». Ничего нового не было слышно о ледяных телах, которые вращаются вокруг Плутона, до 2005 года, пока космический телескоп «Хаббл» не обнаружил еще 2 спутника – Никту и Гидру. Диаметр этих космических тел от 50 до 110 километров. Но самое удивительное открытие ждало ученых в 2011 году, когда «Хабблу» удалось запечатлеть еще один спутник Плутона, который временно называется P4. Его диаметр составляет всего от 13 до 34 километров. Примечательным в данном случае является то, что «Хаббл» сфотографировал такой крошечный космический объект, который расположен на расстоянии около 5 миллиардов километров от нас.
2) Гигантские космические магнитные пузыри
Два космических аппарата НАСА «Войяжер» обнаружили магнитные пузыри в районе Солнечной системы, известной как Гелиосфера, которая расположена в 15 миллиардах километров от Земли. В 1950-х годах ученые считали, что этот район космического пространства относительно ровный, но когда «Войяжер 1» достиг Гелиосферы в 2005, а «Войяжер 2» в 2008 году, они засекли турбулентность, которую образует магнитное поле Солнца, и там формируются магнитные пузыри, диаметром около 160 миллионов километров.
3) Хвост звезды Мира А
В 2007 году орбитальный космический телескоп GALEX сканировал Миру А, старую звезду — красного карлика, что являлось частью предстоящего проекта по сканированию всего неба в ультрафиолетовом свете. Астрономы были шокированы, когда обнаружили что у Миры А имеется длинный хвост, тянущийся за ней, как за кометой, который имеет протяженность около 13 световых лет. Эта звезда двигается по Вселенной с необычайно большой скоростью, примерно 470 тысяч километров в час. До этого считалось, что у звезд не бывает хвостов.
4) Вода на Луне
9 октября 2009 года Космический аппарат для наблюдения и зондирования лунных кратеров НАСА LCROSS обнаружил воду в холодном и постоянно находящимся в тени кратере на южном полюсе Луны. LCROSS является зондом НАСА, который был создан для столкновения с лунной поверхностью, а маленький спутник, следующий за ним, должен был измерить химический состав материала, который поднялся вверх при столкновении. После целого года анализа данных НАСА сообщило о том, что на нашем спутнике имеется вода в виде льда, которая находится на дне этого вечно темного кратера. Позже другие данные показали, что тонкий слой воды покрывает лунный грунт, по крайней мере, в некоторых областях Луны.
5) Карликовая планета Эрида
В январе 2005 года была открыта новая планета Солнечной системы Эрида, которая вызвала в астрономическом мире массу споров о том, что следует считать планетой вообще. Эриду первоначально посчитали 10-й планетой Солнечной системы, но затем все объекты пояса Койпера и пояса астероидов приравняли к новому классу – карликовые планеты. Эрида находится за орбитой Плутона и имеет примерно такой же размер, хотя первоначально считалось, что она больше Плутона. Известно, что у Эриды имеется один спутник, который назвали Дисномия. Пока Эрида и Дисномия считаются самыми дальними объектами Солнечной системы.
6) Следы водных потоков на Марсе
В 2011 году НАСА, предоставив фотографии Красной планеты, сделало заявление о том, что оно имеет свидетельства того, что на Марсе могла в прошлом течь вода, которая оставила следы. Действительно, на снимках видны длинные полосы, похожие на те, что оставляют в породах текущие потоки. Ученые полагают, что эти потоки — соленая вода, которая разогревается во время летних месяцев и начинает стекать по поверхности. Признаки того, что на Марсе когда-то была жидкая вода, были обнаружены и раньше, однако впервые ученые заметили, что эти следы меняются в течение короткого периода времени.
7) Спутник Сатурна Энцелад и его гейзеры
В июле 2004 года космический аппарат «Кассини» вышел на орбиту вокруг Сатурна. После того, как миссии «Войяжер» приблизились к этому спутнику, исследователи решили запустить в данный район другой аппарат для более подробного исследования Энцелада. После того как «Кассини» несколько раз пролетел мимо спутника в 2005 году, ученым удалось сделать ряд открытий, в частности, что в атмосфере Энцелада имеется водяной пар и сложные углеводородные соединения, которые выделяются из геологически активного района Южного Полюса. В мае 2011 года ученые НАСА на конференции, посвященной этому спутнику, заявили, что Энцелад можно считать самым первым претендентом на обнаружение жизни.
8) Тёмный поток
Темный поток, обнаруженный в 2008 году, предоставил ученым больше вопросов, чем ответов. Скопления материи во Вселенной, как оказалось, двигаются на очень большой скорости в одном и том же направлении, что невозможно объяснить с помощью любой известной гравитационной силы в пределах обозримой части Вселенной. Этот феномен был назван «Темный поток». Наблюдая за большими скоплениями галактик, ученые обнаружили около 700 галактических скоплений, двигающихся с определенной скоростью по направлению к отдаленной части Вселенной. Некоторые ученые даже осмелились предположить, что Темный поток двигается из-за давления, вызванного другой Вселенной. Однако некоторые астрономы вообще оспаривают существование темного потока.
9) Экзопланеты
Первые экзопланеты, то есть планеты, существующие за пределами Солнечной системы, были открыты в 1992 году. Астрономы открыли несколько мелких планет, вращающихся вокруг звезды Пульсар. Первая гигантская планета была замечена в 1995 году возле близкой от нас звезды 51 Пегас, которая делала полный оборот вокруг этой звезды за 4 дня. К маю 2012 года в энциклопедии экзопланет было зарегистрировано уже 770 экзопланет. 614 из них являются частью планетарных систем и 104 – множественных планетарных систем. К февралю 2012 года миссия НАСА «Кеплер» выявила 2321 неподтвержденных кандидата на звание экзопланет, которые связаны с 1790 звездами.
10) Первая планета в обитаемой зоне
В декабре 2011 года НАСА подтвердила сообщения об открытии первой планеты, которая расположена в обитаемой зоне, вращаясь вокруг своей родной звезды, похожей на Солнце. Планета получила название Kepler-22b. Ее радиус в 2,5 раза больше радиуса Земли, и она обращается вокруг своей звезды в пригодной для появления жизни зоне. Ученые пока не уверены относительно состава этой планеты, однако это открытие явилось серьезным шагом на пути к обнаружению похожих на Землю миров.
Источник